Segmentation fault (core dumped) when using command " fix qeq "

Dear all,

I want to simulate Ni nanoparticle in amorphous Al2O3\. 

    
    For the reference, "Molecular dynamics simulation study of nanoscale passive oxide growth on Ni-Al alloy surfaces at low temperatures" ( Phys. Rev. B, 2008, 78(8): 085420), I chose the hybrid pair style 'coul/streitz' and 'eam/alloy'.
    
    However, I confront the error, "Segmentation fault (core dumped" when using command "fix qeq" and hybrid pair style. I performed many tests. If I only use the 'eam/alloy', the input file will work. The following is my input file. Does the command 'fix qeq' not suit for my system?

Regards,

Chen Bo

#**************** Input File ******************#

# Initialzation

units metal
atom_style charge
boundary p p p

# Force fields

#pair_style hybrid/overlay coul/streitz 12.0 ewald eam/alloy
pair_style eam/alloy
#kspace_style ewald 1e-6
read_data Ni-AlO2.data

#pair_coeff * * eam/alloy NiAlH_jea.eam.alloy Al Ni NULL
#pair_coeff * * eam/alloy AlO.eam.alloy Al NULL O
#pair_coeff * * coul/streitz AlO.streitz Al Ni O

pair_coeff * * NiAlH_jea.eam.alloy Al Ni H
#pair_coeff * * AlO.eam.alloy Al NULL O

# Settings

group Al type 1
group Ni type 2
group O type 3

#set group Al charge 3.0
#set group O charge -2.0

neighbor 0.3 bin
neigh_modify delay 5

velocity all create 298.15 125583
timestep 0.001

# thermo

thermo_style custom step temp etotal pe evdwl ecoul elong press
thermo_modify norm yes
thermo 1000
restart 500000 restartNi-AlO.*

# Dump

compute keatom all ke/atom
compute peatom all pe/atom
variable keatom atom c_keatom
variable peatom atom c_peatom
dump imf all custom ${step} CoordsNi-Al2O3.txt type id x y z vx vy vz v_keatom v_peatom

# compute atomic property

# compute RDF

# compute MSD

# compute Density

# Fix

fix equil all nvt temp \{temp\} {temp} 50.0 drag 0.2
#fix 1 all qeq/slater 1 12.0 1.0e-6 100 coul/streitz

run 200000

Dear all,

    I want to simulate Ni nanoparticle in amorphous Al2O3.

    For the reference, "Molecular dynamics simulation study of nanoscale passive oxide growth on Ni-Al alloy surfaces at low temperatures" ( Phys. Rev. B, 2008, 78(8): 085420), I chose the hybrid pair style 'coul/streitz' and 'eam/alloy'.

    However, I confront the error, "Segmentation fault (core dumped" when using command "fix qeq" and hybrid pair style. I performed many tests. If I only use the 'eam/alloy', the input file will work. The following is my input file. Does the command 'fix qeq' not suit for my system?

Regards,

Chen Bo

#**************** Input File ******************#

# Initialzation

units metal
atom_style charge
boundary p p p

# Force fields

#pair_style hybrid/overlay coul/streitz 12.0 ewald eam/alloy
pair_style eam/alloy
#kspace_style ewald 1e-6
read_data Ni-AlO2.data

#pair_coeff * * eam/alloy NiAlH_jea.eam.alloy Al Ni NULL
#pair_coeff * * eam/alloy AlO.eam.alloy Al NULL O
#pair_coeff * * coul/streitz AlO.streitz Al Ni O

You can’t combine two eam/alloy potentials (Al-Ni and Al-O) together like this since eam/alloy is not a pair-wise potential. In AlO.streitz did you have parameters for Ni?

pair_coeff * * NiAlH_jea.eam.alloy Al Ni H
#pair_coeff * * AlO.eam.alloy Al NULL O

When you thought you successfully modeled “Ni-Al2O3” with just one eam/alloy using the above line, you were in fact modeling Ni-Al2H3 since the third element is H instead of O.

In brief, you have to find a suitable potential that includes all Ni, Al, O parameters.

Ray

# Settings

group Al type 1
group Ni type 2
group O type 3

#set group Al charge 3.0
#set group O charge -2.0

neighbor 0.3 bin
neigh_modify delay 5

velocity all create 298.15 125583
timestep 0.001

# thermo

thermo_style custom step temp etotal pe evdwl ecoul elong press
thermo_modify norm yes
thermo 1000
restart 500000 restartNi-AlO.*

# Dump

compute keatom all ke/atom
compute peatom all pe/atom
variable keatom atom c_keatom
variable peatom atom c_peatom
dump imf all custom ${step} CoordsNi-Al2O3.txt type id x y z vx vy vz v_keatom v_peatom

# compute atomic property

# compute RDF

# compute MSD

# compute Density

# Fix

fix equil all nvt temp \{temp\} {temp} 50.0 drag 0.2
#fix 1 all qeq/slater 1 12.0 1.0e-6 100 coul/streitz

run 200000