Out-of-plane potential, improper torsion definition

This section supplies the parameters used for the potential when the out-of-plane coordinate is defined according to an improper torsion. An out-of-plane potential is usually applied to planar groups containing an sp² central atom bonded to three other atoms. Examples are amide nitrogens, amide carbons, and the carbon atoms in a benzene ring. The out-of-plane potential acts to keep the central atom in the plane defined by the other three atoms. The functional form is:

$$E = V[1 + \cos(n\chi - \chi_0)]$$
 Eq. 36

where *V* is the force constant with units of kcal mol⁻¹; *n* is the (dimensionless) periodicity of the improper torsion (always 2); χ is the current improper-torsion angle in degrees; and χ_0 the reference improper-torsion angle (always 180°).

The format of the out-of-plane potential (improper torsion definition) section is:

#improper_torsion section_label version reference $i j k l n \chi_0 V$

... #

where *i*, *j*, *k*, and *l* are the atom types of the four atoms involved in the out-of-plane term, *j* being the central atom. This term is asymmetric with respect to the three outer atoms *i*, *k*, and *l*. For example:

Out-of-plane, Wilson definition

This section supplies the parameters used for the potential when the out-of-plane coordinate is defined according to the angle between one bond from the central atom and the plane defined by the other two bonds. An out-of-plane potential is usually applied to planar groups containing an sp² central atom bonded to three other atoms. Examples are amide nitrogens, amide carbons, and the carbon atoms in a benzene ring. The out-of-plane potential acts to keep the central atom in the plane defined by the other three atoms. The functional form is:

$$E = V\chi^2 \qquad \qquad \text{Eq. 37}$$

where *V* is the force constant in kcal mol⁻¹ rad⁻²; and χ is the current Wilson out-of-plane angle in degrees. The program automatically converts the angle to radians before carrying out the calculation.

The format of the out-of-plane potential (Wilson definition) section is:

#wilson_out_of_plane section_label version reference $i j k l \chi_0 V$

... #

where *i*, *j*, *k*, and *l* are the atom types of the four atoms involved in the out-of-plane term, *j* being the central atom; and χ_0 the reference angle in degrees. This term is asymmetric with respect to the outer atoms *i*, *k*, and *l*, but is made symmetric by summing over the three different out-of-planes defined by a trigonal center. For example:

#wilson_out_of_plane				cff91	cff91			
> E = K * (Chi - Chi0)^2								
!Ver	Ref	I	J	к	L	К	Chi0	
!								
1.0	1	с	c=	c=	h	2.0765	0.0	
1.0	1	c=	c=	h	h	2.8561	0.0	
 #								

Out-of-plane interaction potential using improper torsion definition

This section supplies the parameters used for the interaction potential between two out-of-plane coordinates defined according to improper torsions. The central atom of one out-of-plane must be bonded to the central atom of the other. The functional form is:

$$E = V[1 - \cos 2\chi]^{1/2} [1 - \cos 2\chi']^{1/2}$$
 Eq. 38