/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing authors: Mark Stevens (SNL), Aidan Thompson (SNL) ------------------------------------------------------------------------- */ #include "string.h" #include "stdlib.h" #include "math.h" #include "fix_nh.h" #include "math_extra.h" #include "atom.h" #include "force.h" #include "comm.h" #include "irregular.h" #include "modify.h" #include "fix_deform.h" #include "compute.h" #include "kspace.h" #include "update.h" #include "respa.h" #include "domain.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; using namespace FixConst; #define DELTAFLIP 0.1 #define TILTMAX 1.5 enum{NOBIAS,BIAS}; enum{NONE,XYZ,XY,YZ,XZ}; enum{ISO,ANISO,TRICLINIC}; /* ---------------------------------------------------------------------- NVT,NPH,NPT integrators for improved Nose-Hoover equations of motion ---------------------------------------------------------------------- */ FixNH::FixNH(LAMMPS *lmp, int narg, char **arg) : Fix(lmp, narg, arg) { if (narg < 4) error->all(FLERR,"Illegal fix nvt/npt/nph command"); restart_global = 1; time_integrate = 1; scalar_flag = 1; vector_flag = 1; global_freq = 1; extscalar = 1; extvector = 0; // default values pcouple = NONE; drag = 0.0; allremap = 1; mtchain = mpchain = 3; nc_tchain = nc_pchain = 1; mtk_flag = 1; deviatoric_flag = 0; nreset_h0 = 0; eta_mass_flag = 1; omega_mass_flag = 0; etap_mass_flag = 0; // turn on tilt factor scaling, whenever applicable dimension = domain->dimension; scaleyz = scalexz = scalexy = 0; if (domain->yperiodic && domain->xy != 0.0) scalexy = 1; if (domain->zperiodic && dimension == 3) { if (domain->yz != 0.0) scaleyz = 1; if (domain->xz != 0.0) scalexz = 1; } // Set fixed-point to default = center of cell fixedpoint[0] = 0.5*(domain->boxlo[0]+domain->boxhi[0]); fixedpoint[1] = 0.5*(domain->boxlo[1]+domain->boxhi[1]); fixedpoint[2] = 0.5*(domain->boxlo[2]+domain->boxhi[2]); // Used by FixNVTSllod to preserve non-default value mtchain_default_flag = 1; tstat_flag = 0; double t_period = 0.0; double p_period[6]; for (int i = 0; i < 6; i++) { p_start[i] = p_stop[i] = p_period[i] = p_target[i] = 0.0; p_flag[i] = 0; } // process keywords int iarg = 3; while (iarg < narg) { if (strcmp(arg[iarg],"temp") == 0) { if (iarg+4 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); tstat_flag = 1; t_start = atof(arg[iarg+1]); t_stop = atof(arg[iarg+2]); t_period = atof(arg[iarg+3]); if (t_start < 0.0 || t_stop <= 0.0) error->all(FLERR,"Target temperature for fix nvt/npt/nph cannot be 0.0"); iarg += 4; } else if (strcmp(arg[iarg],"iso") == 0) { if (iarg+4 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); pcouple = XYZ; p_start[0] = p_start[1] = p_start[2] = atof(arg[iarg+1]); p_stop[0] = p_stop[1] = p_stop[2] = atof(arg[iarg+2]); p_period[0] = p_period[1] = p_period[2] = atof(arg[iarg+3]); p_flag[0] = p_flag[1] = p_flag[2] = 1; if (dimension == 2) { p_start[2] = p_stop[2] = p_period[2] = 0.0; p_flag[2] = 0; } iarg += 4; } else if (strcmp(arg[iarg],"aniso") == 0) { if (iarg+4 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); pcouple = NONE; p_start[0] = p_start[1] = p_start[2] = atof(arg[iarg+1]); p_stop[0] = p_stop[1] = p_stop[2] = atof(arg[iarg+2]); p_period[0] = p_period[1] = p_period[2] = atof(arg[iarg+3]); p_flag[0] = p_flag[1] = p_flag[2] = 1; if (dimension == 2) { p_start[2] = p_stop[2] = p_period[2] = 0.0; p_flag[2] = 0; } iarg += 4; } else if (strcmp(arg[iarg],"tri") == 0) { if (iarg+4 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); pcouple = NONE; scalexy = scalexz = scaleyz = 0; p_start[0] = p_start[1] = p_start[2] = atof(arg[iarg+1]); p_stop[0] = p_stop[1] = p_stop[2] = atof(arg[iarg+2]); p_period[0] = p_period[1] = p_period[2] = atof(arg[iarg+3]); p_flag[0] = p_flag[1] = p_flag[2] = 1; p_start[3] = p_start[4] = p_start[5] = 0.0; p_stop[3] = p_stop[4] = p_stop[5] = 0.0; p_period[3] = p_period[4] = p_period[5] = atof(arg[iarg+3]); p_flag[3] = p_flag[4] = p_flag[5] = 1; if (dimension == 2) { p_start[2] = p_stop[2] = p_period[2] = 0.0; p_flag[2] = 0; p_start[3] = p_stop[3] = p_period[3] = 0.0; p_flag[3] = 0; p_start[4] = p_stop[4] = p_period[4] = 0.0; p_flag[4] = 0; } iarg += 4; } else if (strcmp(arg[iarg],"x") == 0) { if (iarg+4 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); p_start[0] = atof(arg[iarg+1]); p_stop[0] = atof(arg[iarg+2]); p_period[0] = atof(arg[iarg+3]); p_flag[0] = 1; deviatoric_flag = 1; iarg += 4; } else if (strcmp(arg[iarg],"y") == 0) { if (iarg+4 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); p_start[1] = atof(arg[iarg+1]); p_stop[1] = atof(arg[iarg+2]); p_period[1] = atof(arg[iarg+3]); p_flag[1] = 1; deviatoric_flag = 1; iarg += 4; } else if (strcmp(arg[iarg],"z") == 0) { if (iarg+4 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); p_start[2] = atof(arg[iarg+1]); p_stop[2] = atof(arg[iarg+2]); p_period[2] = atof(arg[iarg+3]); p_flag[2] = 1; deviatoric_flag = 1; iarg += 4; if (dimension == 2) error->all(FLERR,"Invalid fix nvt/npt/nph command for a 2d simulation"); } else if (strcmp(arg[iarg],"yz") == 0) { if (iarg+4 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); scaleyz = 0; p_start[3] = atof(arg[iarg+1]); p_stop[3] = atof(arg[iarg+2]); p_period[3] = atof(arg[iarg+3]); p_flag[3] = 1; deviatoric_flag = 1; iarg += 4; if (dimension == 2) error->all(FLERR,"Invalid fix nvt/npt/nph command for a 2d simulation"); } else if (strcmp(arg[iarg],"xz") == 0) { if (iarg+4 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); scalexz = 0; p_start[4] = atof(arg[iarg+1]); p_stop[4] = atof(arg[iarg+2]); p_period[4] = atof(arg[iarg+3]); p_flag[4] = 1; deviatoric_flag = 1; iarg += 4; if (dimension == 2) error->all(FLERR,"Invalid fix nvt/npt/nph command for a 2d simulation"); } else if (strcmp(arg[iarg],"xy") == 0) { scalexy = 0; if (iarg+4 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); p_start[5] = atof(arg[iarg+1]); p_stop[5] = atof(arg[iarg+2]); p_period[5] = atof(arg[iarg+3]); p_flag[5] = 1; deviatoric_flag = 1; iarg += 4; } else if (strcmp(arg[iarg],"couple") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); if (strcmp(arg[iarg+1],"xyz") == 0) pcouple = XYZ; else if (strcmp(arg[iarg+1],"xy") == 0) pcouple = XY; else if (strcmp(arg[iarg+1],"yz") == 0) pcouple = YZ; else if (strcmp(arg[iarg+1],"xz") == 0) pcouple = XZ; else if (strcmp(arg[iarg+1],"none") == 0) pcouple = NONE; else error->all(FLERR,"Illegal fix nvt/npt/nph command"); iarg += 2; } else if (strcmp(arg[iarg],"drag") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); drag = atof(arg[iarg+1]); if (drag < 0.0) error->all(FLERR,"Illegal fix nvt/npt/nph command"); iarg += 2; } else if (strcmp(arg[iarg],"dilate") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); if (strcmp(arg[iarg+1],"all") == 0) allremap = 1; else if (strcmp(arg[iarg+1],"partial") == 0) allremap = 0; else error->all(FLERR,"Illegal fix nvt/npt/nph command"); iarg += 2; } else if (strcmp(arg[iarg],"tchain") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); mtchain = atoi(arg[iarg+1]); // used by FixNVTSllod to preserve non-default value mtchain_default_flag = 0; if (mtchain < 1) error->all(FLERR,"Illegal fix nvt/npt/nph command"); iarg += 2; } else if (strcmp(arg[iarg],"pchain") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); mpchain = atoi(arg[iarg+1]); if (mpchain < 0) error->all(FLERR,"Illegal fix nvt/npt/nph command"); iarg += 2; } else if (strcmp(arg[iarg],"mtk") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); if (strcmp(arg[iarg+1],"yes") == 0) mtk_flag = 1; else if (strcmp(arg[iarg+1],"no") == 0) mtk_flag = 0; else error->all(FLERR,"Illegal fix nvt/npt/nph command"); iarg += 2; } else if (strcmp(arg[iarg],"tloop") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); nc_tchain = atoi(arg[iarg+1]); if (nc_tchain < 0) error->all(FLERR,"Illegal fix nvt/npt/nph command"); iarg += 2; } else if (strcmp(arg[iarg],"ploop") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); nc_pchain = atoi(arg[iarg+1]); if (nc_pchain < 0) error->all(FLERR,"Illegal fix nvt/npt/nph command"); iarg += 2; } else if (strcmp(arg[iarg],"nreset") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); nreset_h0 = atoi(arg[iarg+1]); if (nreset_h0 < 0) error->all(FLERR,"Illegal fix nvt/npt/nph command"); iarg += 2; } else if (strcmp(arg[iarg],"scalexy") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); if (strcmp(arg[iarg+1],"yes") == 0) scalexy = 1; else if (strcmp(arg[iarg+1],"no") == 0) scalexy = 0; else error->all(FLERR,"Illegal fix nvt/npt/nph command"); iarg += 2; } else if (strcmp(arg[iarg],"scalexz") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); if (strcmp(arg[iarg+1],"yes") == 0) scalexz = 1; else if (strcmp(arg[iarg+1],"no") == 0) scalexz = 0; else error->all(FLERR,"Illegal fix nvt/npt/nph command"); iarg += 2; } else if (strcmp(arg[iarg],"scaleyz") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); if (strcmp(arg[iarg+1],"yes") == 0) scaleyz = 1; else if (strcmp(arg[iarg+1],"no") == 0) scaleyz = 0; else error->all(FLERR,"Illegal fix nvt/npt/nph command"); iarg += 2; } else if (strcmp(arg[iarg],"fixedpoint") == 0) { if (iarg+4 > narg) error->all(FLERR,"Illegal fix nvt/npt/nph command"); fixedpoint[0] = atof(arg[iarg+1]); fixedpoint[1] = atof(arg[iarg+2]); fixedpoint[2] = atof(arg[iarg+3]); iarg += 4; } else error->all(FLERR,"Illegal fix nvt/npt/nph command"); } // error checks if (dimension == 2 && (p_flag[2] || p_flag[3] || p_flag[4])) error->all(FLERR,"Invalid fix nvt/npt/nph command for a 2d simulation"); if (dimension == 2 && (pcouple == YZ || pcouple == XZ)) error->all(FLERR,"Invalid fix nvt/npt/nph command for a 2d simulation"); if (dimension == 2 && (scalexz == 1 || scaleyz == 1 )) error->all(FLERR,"Invalid fix nvt/npt/nph command for a 2d simulation"); if (pcouple == XYZ && (p_flag[0] == 0 || p_flag[1] == 0)) error->all(FLERR,"Invalid fix nvt/npt/nph command pressure settings"); if (pcouple == XYZ && dimension == 3 && p_flag[2] == 0) error->all(FLERR,"Invalid fix nvt/npt/nph command pressure settings"); if (pcouple == XY && (p_flag[0] == 0 || p_flag[1] == 0)) error->all(FLERR,"Invalid fix nvt/npt/nph command pressure settings"); if (pcouple == YZ && (p_flag[1] == 0 || p_flag[2] == 0)) error->all(FLERR,"Invalid fix nvt/npt/nph command pressure settings"); if (pcouple == XZ && (p_flag[0] == 0 || p_flag[2] == 0)) error->all(FLERR,"Invalid fix nvt/npt/nph command pressure settings"); // require periodicity in tensile dimension if (p_flag[0] && domain->xperiodic == 0) error->all(FLERR,"Cannot use fix nvt/npt/nph on a non-periodic dimension"); if (p_flag[1] && domain->yperiodic == 0) error->all(FLERR,"Cannot use fix nvt/npt/nph on a non-periodic dimension"); if (p_flag[2] && domain->zperiodic == 0) error->all(FLERR,"Cannot use fix nvt/npt/nph on a non-periodic dimension"); // require periodicity in 2nd dim of off-diagonal tilt component if (p_flag[3] && domain->zperiodic == 0) error->all(FLERR, "Cannot use fix nvt/npt/nph on a 2nd non-periodic dimension"); if (p_flag[4] && domain->zperiodic == 0) error->all(FLERR, "Cannot use fix nvt/npt/nph on a 2nd non-periodic dimension"); if (p_flag[5] && domain->yperiodic == 0) error->all(FLERR, "Cannot use fix nvt/npt/nph on a 2nd non-periodic dimension"); if (scaleyz == 1 && domain->zperiodic == 0) error->all(FLERR,"Cannot use fix nvt/npt/nph " "with yz dynamics when z is non-periodic dimension"); if (scalexz == 1 && domain->zperiodic == 0) error->all(FLERR,"Cannot use fix nvt/npt/nph " "with xz dynamics when z is non-periodic dimension"); if (scalexy == 1 && domain->yperiodic == 0) error->all(FLERR,"Cannot use fix nvt/npt/nph " "with xy dynamics when y is non-periodic dimension"); if (p_flag[3] && scaleyz == 1) error->all(FLERR,"Cannot use fix nvt/npt/nph with " "both yz dynamics and yz scaling"); if (p_flag[4] && scalexz == 1) error->all(FLERR,"Cannot use fix nvt/npt/nph with " "both xz dynamics and xz scaling"); if (p_flag[5] && scalexy == 1) error->all(FLERR,"Cannot use fix nvt/npt/nph with " "both xy dynamics and xy scaling"); if (!domain->triclinic && (p_flag[3] || p_flag[4] || p_flag[5])) error->all(FLERR,"Can not specify Pxy/Pxz/Pyz in " "fix nvt/npt/nph with non-triclinic box"); if (pcouple == XYZ && dimension == 3 && (p_start[0] != p_start[1] || p_start[0] != p_start[2] || p_stop[0] != p_stop[1] || p_stop[0] != p_stop[2] || p_period[0] != p_period[1] || p_period[0] != p_period[2])) error->all(FLERR,"Invalid fix nvt/npt/nph pressure settings"); if (pcouple == XYZ && dimension == 2 && (p_start[0] != p_start[1] || p_stop[0] != p_stop[1] || p_period[0] != p_period[1])) error->all(FLERR,"Invalid fix nvt/npt/nph pressure settings"); if (pcouple == XY && (p_start[0] != p_start[1] || p_stop[0] != p_stop[1] || p_period[0] != p_period[1])) error->all(FLERR,"Invalid fix nvt/npt/nph pressure settings"); if (pcouple == YZ && (p_start[1] != p_start[2] || p_stop[1] != p_stop[2] || p_period[1] != p_period[2])) error->all(FLERR,"Invalid fix nvt/npt/nph pressure settings"); if (pcouple == XZ && (p_start[0] != p_start[2] || p_stop[0] != p_stop[2] || p_period[0] != p_period[2])) error->all(FLERR,"Invalid fix nvt/npt/nph pressure settings"); if ((tstat_flag && t_period <= 0.0) || (p_flag[0] && p_period[0] <= 0.0) || (p_flag[1] && p_period[1] <= 0.0) || (p_flag[2] && p_period[2] <= 0.0) || (p_flag[3] && p_period[3] <= 0.0) || (p_flag[4] && p_period[4] <= 0.0) || (p_flag[5] && p_period[5] <= 0.0)) error->all(FLERR,"Fix nvt/npt/nph damping parameters must be > 0.0"); // set pstat_flag and box change and restart_pbc variables pstat_flag = 0; for (int i = 0; i < 6; i++) if (p_flag[i]) pstat_flag = 1; if (pstat_flag) { box_change = 1; if (p_flag[0] || p_flag[1] || p_flag[2]) box_change_size = 1; if (p_flag[3] || p_flag[4] || p_flag[5]) box_change_shape = 1; no_change_box = 1; if (allremap == 0) restart_pbc = 1; } // pstyle = TRICLINIC if any off-diagonal term is controlled -> 6 dof // else pstyle = ISO if XYZ coupling or XY coupling in 2d -> 1 dof // else pstyle = ANISO -> 3 dof if (p_flag[3] || p_flag[4] || p_flag[5]) pstyle = TRICLINIC; else if (pcouple == XYZ || (dimension == 2 && pcouple == XY)) pstyle = ISO; else pstyle = ANISO; // reneighboring only forced if flips will occur due to shape changes if (p_flag[3] || p_flag[4] || p_flag[5]) force_reneighbor = 1; if (scaleyz || scalexz || scalexy) force_reneighbor = 1; // convert input periods to frequencies t_freq = 0.0; p_freq[0] = p_freq[1] = p_freq[2] = p_freq[3] = p_freq[4] = p_freq[5] = 0.0; if (tstat_flag) t_freq = 1.0 / t_period; if (p_flag[0]) p_freq[0] = 1.0 / p_period[0]; if (p_flag[1]) p_freq[1] = 1.0 / p_period[1]; if (p_flag[2]) p_freq[2] = 1.0 / p_period[2]; if (p_flag[3]) p_freq[3] = 1.0 / p_period[3]; if (p_flag[4]) p_freq[4] = 1.0 / p_period[4]; if (p_flag[5]) p_freq[5] = 1.0 / p_period[5]; // Nose/Hoover temp and pressure init size_vector = 0; if (tstat_flag) { int ich; eta = new double[mtchain]; // add one extra dummy thermostat, set to zero eta_dot = new double[mtchain+1]; eta_dot[mtchain] = 0.0; eta_dotdot = new double[mtchain]; for (ich = 0; ich < mtchain; ich++) { eta[ich] = eta_dot[ich] = eta_dotdot[ich] = 0.0; } eta_mass = new double[mtchain]; size_vector += 2*2*mtchain; } if (pstat_flag) { omega[0] = omega[1] = omega[2] = 0.0; omega_dot[0] = omega_dot[1] = omega_dot[2] = 0.0; omega_mass[0] = omega_mass[1] = omega_mass[2] = 0.0; omega[3] = omega[4] = omega[5] = 0.0; omega_dot[3] = omega_dot[4] = omega_dot[5] = 0.0; omega_mass[3] = omega_mass[4] = omega_mass[5] = 0.0; if (pstyle == ISO) size_vector += 2*2*1; else if (pstyle == ANISO) size_vector += 2*2*3; else if (pstyle == TRICLINIC) size_vector += 2*2*6; if (mpchain) { int ich; etap = new double[mpchain]; // add one extra dummy thermostat, set to zero etap_dot = new double[mpchain+1]; etap_dot[mpchain] = 0.0; etap_dotdot = new double[mpchain]; for (ich = 0; ich < mpchain; ich++) { etap[ich] = etap_dot[ich] = etap_dotdot[ich] = 0.0; } etap_mass = new double[mpchain]; size_vector += 2*2*mpchain; } if (deviatoric_flag) size_vector += 1; } nrigid = 0; rfix = NULL; if (force_reneighbor) irregular = new Irregular(lmp); else irregular = NULL; // initialize vol0,t0 to zero to signal uninitialized // values then assigned in init(), if necessary vol0 = t0 = 0.0; } /* ---------------------------------------------------------------------- */ FixNH::~FixNH() { delete [] rfix; delete irregular; // delete temperature and pressure if fix created them if (tflag) modify->delete_compute(id_temp); delete [] id_temp; if (tstat_flag) { delete [] eta; delete [] eta_dot; delete [] eta_dotdot; delete [] eta_mass; } if (pstat_flag) { if (pflag) modify->delete_compute(id_press); delete [] id_press; if (mpchain) { delete [] etap; delete [] etap_dot; delete [] etap_dotdot; delete [] etap_mass; } } } /* ---------------------------------------------------------------------- */ int FixNH::setmask() { int mask = 0; mask |= INITIAL_INTEGRATE; mask |= FINAL_INTEGRATE; mask |= THERMO_ENERGY; mask |= INITIAL_INTEGRATE_RESPA; mask |= FINAL_INTEGRATE_RESPA; if (force_reneighbor) mask |= PRE_EXCHANGE; return mask; } /* ---------------------------------------------------------------------- */ void FixNH::init() { // ensure no conflict with fix deform if (pstat_flag) for (int i = 0; i < modify->nfix; i++) if (strcmp(modify->fix[i]->style,"deform") == 0) { int *dimflag = ((FixDeform *) modify->fix[i])->dimflag; if ((p_flag[0] && dimflag[0]) || (p_flag[1] && dimflag[1]) || (p_flag[2] && dimflag[2]) || (p_flag[3] && dimflag[3]) || (p_flag[4] && dimflag[4]) || (p_flag[5] && dimflag[5])) error->all(FLERR,"Cannot use fix npt and fix deform on " "same component of stress tensor"); } // set temperature and pressure ptrs int icompute = modify->find_compute(id_temp); if (icompute < 0) error->all(FLERR,"Temperature ID for fix nvt/nph/npt does not exist"); temperature = modify->compute[icompute]; if (temperature->tempbias) which = BIAS; else which = NOBIAS; if (pstat_flag) { icompute = modify->find_compute(id_press); if (icompute < 0) error->all(FLERR,"Pressure ID for fix npt/nph does not exist"); pressure = modify->compute[icompute]; } // set timesteps and frequencies dtv = update->dt; dtf = 0.5 * update->dt * force->ftm2v; dthalf = 0.5 * update->dt; dt4 = 0.25 * update->dt; dt8 = 0.125 * update->dt; dto = dthalf; p_freq_max = 0.0; if (pstat_flag) { p_freq_max = MAX(p_freq[0],p_freq[1]); p_freq_max = MAX(p_freq_max,p_freq[2]); if (pstyle == TRICLINIC) { p_freq_max = MAX(p_freq_max,p_freq[3]); p_freq_max = MAX(p_freq_max,p_freq[4]); p_freq_max = MAX(p_freq_max,p_freq[5]); } pdrag_factor = 1.0 - (update->dt * p_freq_max * drag / nc_pchain); } if (tstat_flag) tdrag_factor = 1.0 - (update->dt * t_freq * drag / nc_tchain); // tally the number of dimensions that are barostatted // set initial volume and reference cell, if not already done if (pstat_flag) { pdim = p_flag[0] + p_flag[1] + p_flag[2]; if (vol0 == 0.0) { if (dimension == 3) vol0 = domain->xprd * domain->yprd * domain->zprd; else vol0 = domain->xprd * domain->yprd; h0_inv[0] = domain->h_inv[0]; h0_inv[1] = domain->h_inv[1]; h0_inv[2] = domain->h_inv[2]; h0_inv[3] = domain->h_inv[3]; h0_inv[4] = domain->h_inv[4]; h0_inv[5] = domain->h_inv[5]; } } boltz = force->boltz; nktv2p = force->nktv2p; if (force->kspace) kspace_flag = 1; else kspace_flag = 0; if (strstr(update->integrate_style,"respa")) { nlevels_respa = ((Respa *) update->integrate)->nlevels; step_respa = ((Respa *) update->integrate)->step; dto = 0.5*step_respa[0]; } // detect if any rigid fixes exist so rigid bodies move when box is remapped // rfix[] = indices to each fix rigid delete [] rfix; nrigid = 0; rfix = NULL; for (int i = 0; i < modify->nfix; i++) if (modify->fix[i]->rigid_flag) nrigid++; if (nrigid) { rfix = new int[nrigid]; nrigid = 0; for (int i = 0; i < modify->nfix; i++) if (modify->fix[i]->rigid_flag) rfix[nrigid++] = i; } } /* ---------------------------------------------------------------------- compute T,P before integrator starts ------------------------------------------------------------------------- */ void FixNH::setup(int vflag) { // initialize some quantities that were not available earlier tdof = temperature->dof; // t_target is needed by NPH and NPT in compute_scalar() // If no thermostat or using fix nphug, // t_target must be defined by other means. if (tstat_flag && strcmp(style,"nphug") != 0) { compute_temp_target(); } else if (pstat_flag) { // t0 = reference temperature for masses // cannot be done in init() b/c temperature cannot be called there // is b/c Modify::init() inits computes after fixes due to dof dependence // guesstimate a unit-dependent t0 if actual T = 0.0 // if it was read in from a restart file, leave it be if (t0 == 0.0) { t0 = temperature->compute_scalar(); if (t0 == 0.0) { if (strcmp(update->unit_style,"lj") == 0) t0 = 1.0; else t0 = 300.0; } } t_target = t0; } if (pstat_flag) compute_press_target(); t_current = temperature->compute_scalar(); if (pstat_flag) { if (pstyle == ISO) pressure->compute_scalar(); else pressure->compute_vector(); couple(); pressure->addstep(update->ntimestep+1); } // masses and initial forces on thermostat variables if (tstat_flag) { eta_mass[0] = tdof * boltz * t_target / (t_freq*t_freq); for (int ich = 1; ich < mtchain; ich++) eta_mass[ich] = boltz * t_target / (t_freq*t_freq); for (int ich = 1; ich < mtchain; ich++) { eta_dotdot[ich] = (eta_mass[ich-1]*eta_dot[ich-1]*eta_dot[ich-1] - boltz * t_target) / eta_mass[ich]; } } // masses and initial forces on barostat variables if (pstat_flag) { double kt = boltz * t_target; double nkt = atom->natoms * kt; for (int i = 0; i < 3; i++) if (p_flag[i]) omega_mass[i] = nkt/(p_freq[i]*p_freq[i]); if (pstyle == TRICLINIC) { for (int i = 3; i < 6; i++) if (p_flag[i]) omega_mass[i] = nkt/(p_freq[i]*p_freq[i]); } // masses and initial forces on barostat thermostat variables if (mpchain) { etap_mass[0] = boltz * t_target / (p_freq_max*p_freq_max); for (int ich = 1; ich < mpchain; ich++) etap_mass[ich] = boltz * t_target / (p_freq_max*p_freq_max); for (int ich = 1; ich < mpchain; ich++) etap_dotdot[ich] = (etap_mass[ich-1]*etap_dot[ich-1]*etap_dot[ich-1] - boltz * t_target) / etap_mass[ich]; } } } /* ---------------------------------------------------------------------- 1st half of Verlet update ------------------------------------------------------------------------- */ void FixNH::initial_integrate(int vflag) { // update eta_press_dot if (pstat_flag && mpchain) nhc_press_integrate(); // update eta_dot if (tstat_flag) { compute_temp_target(); nhc_temp_integrate(); } // need to recompute pressure to account for change in KE // t_current is up-to-date, but compute_temperature is not // compute appropriately coupled elements of mvv_current if (pstat_flag) { if (pstyle == ISO) { temperature->compute_scalar(); pressure->compute_scalar(); } else { temperature->compute_vector(); pressure->compute_vector(); } couple(); pressure->addstep(update->ntimestep+1); } if (pstat_flag) { compute_press_target(); nh_omega_dot(); nh_v_press(); } nve_v(); // remap simulation box by 1/2 step if (pstat_flag) remap(); nve_x(); // remap simulation box by 1/2 step // redo KSpace coeffs since volume has changed if (pstat_flag) { remap(); if (kspace_flag) force->kspace->setup(); } } /* ---------------------------------------------------------------------- 2nd half of Verlet update ------------------------------------------------------------------------- */ void FixNH::final_integrate() { nve_v(); if (pstat_flag) nh_v_press(); // compute new T,P // compute appropriately coupled elements of mvv_current t_current = temperature->compute_scalar(); if (pstat_flag) { if (pstyle == ISO) pressure->compute_scalar(); else pressure->compute_vector(); couple(); pressure->addstep(update->ntimestep+1); } if (pstat_flag) nh_omega_dot(); // update eta_dot // update eta_press_dot if (tstat_flag) nhc_temp_integrate(); if (pstat_flag && mpchain) nhc_press_integrate(); } /* ---------------------------------------------------------------------- */ void FixNH::initial_integrate_respa(int vflag, int ilevel, int iloop) { // set timesteps by level dtv = step_respa[ilevel]; dtf = 0.5 * step_respa[ilevel] * force->ftm2v; dthalf = 0.5 * step_respa[ilevel]; // outermost level - update eta_dot and omega_dot, apply to v // all other levels - NVE update of v // x,v updates only performed for atoms in group if (ilevel == nlevels_respa-1) { // update eta_press_dot if (pstat_flag && mpchain) nhc_press_integrate(); // update eta_dot if (tstat_flag) { compute_temp_target(); nhc_temp_integrate(); } // recompute pressure to account for change in KE // t_current is up-to-date, but compute_temperature is not // compute appropriately coupled elements of mvv_current if (pstat_flag) { if (pstyle == ISO) { temperature->compute_scalar(); pressure->compute_scalar(); } else { temperature->compute_vector(); pressure->compute_vector(); } couple(); pressure->addstep(update->ntimestep+1); } if (pstat_flag) { compute_press_target(); nh_omega_dot(); nh_v_press(); } nve_v(); } else nve_v(); // innermost level - also update x only for atoms in group // if barostat, perform 1/2 step remap before and after if (ilevel == 0) { if (pstat_flag) remap(); nve_x(); if (pstat_flag) remap(); } // if barostat, redo KSpace coeffs at outermost level, // since volume has changed if (ilevel == nlevels_respa-1 && kspace_flag && pstat_flag) force->kspace->setup(); } /* ---------------------------------------------------------------------- */ void FixNH::final_integrate_respa(int ilevel, int iloop) { // set timesteps by level dtf = 0.5 * step_respa[ilevel] * force->ftm2v; dthalf = 0.5 * step_respa[ilevel]; // outermost level - update eta_dot and omega_dot, apply via final_integrate // all other levels - NVE update of v if (ilevel == nlevels_respa-1) final_integrate(); else nve_v(); } /* ---------------------------------------------------------------------- */ void FixNH::couple() { double *tensor = pressure->vector; if (pstyle == ISO) p_current[0] = p_current[1] = p_current[2] = pressure->scalar; else if (pcouple == XYZ) { double ave = 1.0/3.0 * (tensor[0] + tensor[1] + tensor[2]); p_current[0] = p_current[1] = p_current[2] = ave; } else if (pcouple == XY) { double ave = 0.5 * (tensor[0] + tensor[1]); p_current[0] = p_current[1] = ave; p_current[2] = tensor[2]; } else if (pcouple == YZ) { double ave = 0.5 * (tensor[1] + tensor[2]); p_current[1] = p_current[2] = ave; p_current[0] = tensor[0]; } else if (pcouple == XZ) { double ave = 0.5 * (tensor[0] + tensor[2]); p_current[0] = p_current[2] = ave; p_current[1] = tensor[1]; } else { p_current[0] = tensor[0]; p_current[1] = tensor[1]; p_current[2] = tensor[2]; } // switch order from xy-xz-yz to Voigt if (pstyle == TRICLINIC) { p_current[3] = tensor[5]; p_current[4] = tensor[4]; p_current[5] = tensor[3]; } } /* ---------------------------------------------------------------------- change box size remap all atoms or fix group atoms depending on allremap flag if rigid bodies exist, scale rigid body centers-of-mass ------------------------------------------------------------------------- */ void FixNH::remap() { int i; double oldlo,oldhi; double expfac; double **x = atom->x; int *mask = atom->mask; int nlocal = atom->nlocal; double *h = domain->h; // omega is not used, except for book-keeping for (int i = 0; i < 6; i++) omega[i] += dto*omega_dot[i]; // convert pertinent atoms and rigid bodies to lamda coords if (allremap) domain->x2lamda(nlocal); else { for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) domain->x2lamda(x[i],x[i]); } if (nrigid) for (i = 0; i < nrigid; i++) modify->fix[rfix[i]]->deform(0); // reset global and local box to new size/shape // this operation corresponds to applying the // translate and scale operations // corresponding to the solution of the following ODE: // // h_dot = omega_dot * h // // where h_dot, omega_dot and h are all upper-triangular // 3x3 tensors. In Voigt notation, the elements of the // RHS product tensor are: // h_dot = [0*0, 1*1, 2*2, 1*3+3*2, 0*4+5*3+4*2, 0*5+5*1] // // Ordering of operations preserves time symmetry. double dto2 = dto/2.0; double dto4 = dto/4.0; double dto8 = dto/8.0; // off-diagonal components, first half if (pstyle == TRICLINIC) { if (p_flag[4]) { expfac = exp(dto8*omega_dot[0]); h[4] *= expfac; h[4] += dto4*(omega_dot[5]*h[3]+omega_dot[4]*h[2]); h[4] *= expfac; } if (p_flag[3]) { expfac = exp(dto4*omega_dot[1]); h[3] *= expfac; h[3] += dto2*(omega_dot[3]*h[2]); h[3] *= expfac; } if (p_flag[5]) { expfac = exp(dto4*omega_dot[0]); h[5] *= expfac; h[5] += dto2*(omega_dot[5]*h[1]); h[5] *= expfac; } if (p_flag[4]) { expfac = exp(dto8*omega_dot[0]); h[4] *= expfac; h[4] += dto4*(omega_dot[5]*h[3]+omega_dot[4]*h[2]); h[4] *= expfac; } } // scale diagonal components // scale tilt factors with cell, if set if (p_flag[0]) { oldlo = domain->boxlo[0]; oldhi = domain->boxhi[0]; expfac = exp(dto*omega_dot[0]); domain->boxlo[0] = (oldlo-fixedpoint[0])*expfac + fixedpoint[0]; domain->boxhi[0] = (oldhi-fixedpoint[0])*expfac + fixedpoint[0]; } if (p_flag[1]) { oldlo = domain->boxlo[1]; oldhi = domain->boxhi[1]; expfac = exp(dto*omega_dot[1]); domain->boxlo[1] = (oldlo-fixedpoint[1])*expfac + fixedpoint[1]; domain->boxhi[1] = (oldhi-fixedpoint[1])*expfac + fixedpoint[1]; if (scalexy) h[5] *= expfac; } if (p_flag[2]) { oldlo = domain->boxlo[2]; oldhi = domain->boxhi[2]; expfac = exp(dto*omega_dot[2]); domain->boxlo[2] = (oldlo-fixedpoint[2])*expfac + fixedpoint[2]; domain->boxhi[2] = (oldhi-fixedpoint[2])*expfac + fixedpoint[2]; if (scalexz) h[4] *= expfac; if (scaleyz) h[3] *= expfac; } // off-diagonal components, second half if (pstyle == TRICLINIC) { if (p_flag[4]) { expfac = exp(dto8*omega_dot[0]); h[4] *= expfac; h[4] += dto4*(omega_dot[5]*h[3]+omega_dot[4]*h[2]); h[4] *= expfac; } if (p_flag[3]) { expfac = exp(dto4*omega_dot[1]); h[3] *= expfac; h[3] += dto2*(omega_dot[3]*h[2]); h[3] *= expfac; } if (p_flag[5]) { expfac = exp(dto4*omega_dot[0]); h[5] *= expfac; h[5] += dto2*(omega_dot[5]*h[1]); h[5] *= expfac; } if (p_flag[4]) { expfac = exp(dto8*omega_dot[0]); h[4] *= expfac; h[4] += dto4*(omega_dot[5]*h[3]+omega_dot[4]*h[2]); h[4] *= expfac; } } domain->yz = h[3]; domain->xz = h[4]; domain->xy = h[5]; // tilt factor to cell length ratio can not exceed TILTMAX in one step if (domain->yz < -TILTMAX*domain->yprd || domain->yz > TILTMAX*domain->yprd || domain->xz < -TILTMAX*domain->xprd || domain->xz > TILTMAX*domain->xprd || domain->xy < -TILTMAX*domain->xprd || domain->xy > TILTMAX*domain->xprd) error->all(FLERR,"Fix npt/nph has tilted box too far in one step - " "periodic cell is too far from equilibrium state"); domain->set_global_box(); domain->set_local_box(); // convert pertinent atoms and rigid bodies back to box coords if (allremap) domain->lamda2x(nlocal); else { for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) domain->lamda2x(x[i],x[i]); } if (nrigid) for (i = 0; i < nrigid; i++) modify->fix[rfix[i]]->deform(1); } /* ---------------------------------------------------------------------- pack entire state of Fix into one write ------------------------------------------------------------------------- */ void FixNH::write_restart(FILE *fp) { int nsize = size_restart_global(); double *list; memory->create(list,nsize,"nh:list"); int n = pack_restart_data(list); if (comm->me == 0) { int size = nsize * sizeof(double); fwrite(&size,sizeof(int),1,fp); fwrite(list,sizeof(double),nsize,fp); } memory->destroy(list); } /* ---------------------------------------------------------------------- calculate the number of data to be packed ------------------------------------------------------------------------- */ int FixNH::size_restart_global() { int nsize = 2; if (tstat_flag) nsize += 1 + 2*mtchain; if (pstat_flag) { nsize += 16 + 2*mpchain; if (deviatoric_flag) nsize += 6; } return nsize; } /* ---------------------------------------------------------------------- pack restart data ------------------------------------------------------------------------- */ int FixNH::pack_restart_data(double *list) { int n = 0; list[n++] = tstat_flag; if (tstat_flag) { list[n++] = mtchain; for (int ich = 0; ich < mtchain; ich++) list[n++] = eta[ich]; for (int ich = 0; ich < mtchain; ich++) list[n++] = eta_dot[ich]; } list[n++] = pstat_flag; if (pstat_flag) { list[n++] = omega[0]; list[n++] = omega[1]; list[n++] = omega[2]; list[n++] = omega[3]; list[n++] = omega[4]; list[n++] = omega[5]; list[n++] = omega_dot[0]; list[n++] = omega_dot[1]; list[n++] = omega_dot[2]; list[n++] = omega_dot[3]; list[n++] = omega_dot[4]; list[n++] = omega_dot[5]; list[n++] = vol0; list[n++] = t0; list[n++] = mpchain; if (mpchain) { for (int ich = 0; ich < mpchain; ich++) list[n++] = etap[ich]; for (int ich = 0; ich < mpchain; ich++) list[n++] = etap_dot[ich]; } list[n++] = deviatoric_flag; if (deviatoric_flag) { list[n++] = h0_inv[0]; list[n++] = h0_inv[1]; list[n++] = h0_inv[2]; list[n++] = h0_inv[3]; list[n++] = h0_inv[4]; list[n++] = h0_inv[5]; } } return n; } /* ---------------------------------------------------------------------- use state info from restart file to restart the Fix ------------------------------------------------------------------------- */ void FixNH::restart(char *buf) { int n = 0; double *list = (double *) buf; int flag = static_cast (list[n++]); if (flag) { int m = static_cast (list[n++]); if (tstat_flag && m == mtchain) { for (int ich = 0; ich < mtchain; ich++) eta[ich] = list[n++]; for (int ich = 0; ich < mtchain; ich++) eta_dot[ich] = list[n++]; } else n += 2*m; } flag = static_cast (list[n++]); if (flag) { omega[0] = list[n++]; omega[1] = list[n++]; omega[2] = list[n++]; omega[3] = list[n++]; omega[4] = list[n++]; omega[5] = list[n++]; omega_dot[0] = list[n++]; omega_dot[1] = list[n++]; omega_dot[2] = list[n++]; omega_dot[3] = list[n++]; omega_dot[4] = list[n++]; omega_dot[5] = list[n++]; vol0 = list[n++]; t0 = list[n++]; int m = static_cast (list[n++]); if (pstat_flag && m == mpchain) { for (int ich = 0; ich < mpchain; ich++) etap[ich] = list[n++]; for (int ich = 0; ich < mpchain; ich++) etap_dot[ich] = list[n++]; } else n+=2*m; flag = static_cast (list[n++]); if (flag) { h0_inv[0] = list[n++]; h0_inv[1] = list[n++]; h0_inv[2] = list[n++]; h0_inv[3] = list[n++]; h0_inv[4] = list[n++]; h0_inv[5] = list[n++]; } } } /* ---------------------------------------------------------------------- */ int FixNH::modify_param(int narg, char **arg) { if (strcmp(arg[0],"temp") == 0) { if (narg < 2) error->all(FLERR,"Illegal fix_modify command"); if (tflag) { modify->delete_compute(id_temp); tflag = 0; } delete [] id_temp; int n = strlen(arg[1]) + 1; id_temp = new char[n]; strcpy(id_temp,arg[1]); int icompute = modify->find_compute(arg[1]); if (icompute < 0) error->all(FLERR,"Could not find fix_modify temperature ID"); temperature = modify->compute[icompute]; if (temperature->tempflag == 0) error->all(FLERR,"Fix_modify temperature ID does not compute temperature"); if (temperature->igroup != 0 && comm->me == 0) error->warning(FLERR,"Temperature for fix modify is not for group all"); // reset id_temp of pressure to new temperature ID if (pstat_flag) { icompute = modify->find_compute(id_press); if (icompute < 0) error->all(FLERR,"Pressure ID for fix modify does not exist"); modify->compute[icompute]->reset_extra_compute_fix(id_temp); } return 2; } else if (strcmp(arg[0],"press") == 0) { if (narg < 2) error->all(FLERR,"Illegal fix_modify command"); if (!pstat_flag) error->all(FLERR,"Illegal fix_modify command"); if (pflag) { modify->delete_compute(id_press); pflag = 0; } delete [] id_press; int n = strlen(arg[1]) + 1; id_press = new char[n]; strcpy(id_press,arg[1]); int icompute = modify->find_compute(arg[1]); if (icompute < 0) error->all(FLERR,"Could not find fix_modify pressure ID"); pressure = modify->compute[icompute]; if (pressure->pressflag == 0) error->all(FLERR,"Fix_modify pressure ID does not compute pressure"); return 2; } return 0; } /* ---------------------------------------------------------------------- */ double FixNH::compute_scalar() { int i; double volume; double energy; double kt = boltz * t_target; double lkt_press = kt; int ich; if (dimension == 3) volume = domain->xprd * domain->yprd * domain->zprd; else volume = domain->xprd * domain->yprd; energy = 0.0; // thermostat chain energy is equivalent to Eq. (2) in // Martyna, Tuckerman, Tobias, Klein, Mol Phys, 87, 1117 // Sum(0.5*p_eta_k^2/Q_k,k=1,M) + L*k*T*eta_1 + Sum(k*T*eta_k,k=2,M), // where L = tdof // M = mtchain // p_eta_k = Q_k*eta_dot[k-1] // Q_1 = L*k*T/t_freq^2 // Q_k = k*T/t_freq^2, k > 1 if (tstat_flag) { energy += ke_target * eta[0] + 0.5*eta_mass[0]*eta_dot[0]*eta_dot[0]; for (ich = 1; ich < mtchain; ich++) energy += kt * eta[ich] + 0.5*eta_mass[ich]*eta_dot[ich]*eta_dot[ich]; } // barostat energy is equivalent to Eq. (8) in // Martyna, Tuckerman, Tobias, Klein, Mol Phys, 87, 1117 // Sum(0.5*p_omega^2/W + P*V), // where N = natoms // p_omega = W*omega_dot // W = N*k*T/p_freq^2 // sum is over barostatted dimensions if (pstat_flag) { for (i = 0; i < 3; i++) if (p_flag[i]) energy += 0.5*omega_dot[i]*omega_dot[i]*omega_mass[i] + p_hydro*(volume-vol0) / (pdim*nktv2p); if (pstyle == TRICLINIC) { for (i = 3; i < 6; i++) if (p_flag[i]) energy += 0.5*omega_dot[i]*omega_dot[i]*omega_mass[i]; } // extra contributions from thermostat chain for barostat if (mpchain) { energy += lkt_press * etap[0] + 0.5*etap_mass[0]*etap_dot[0]*etap_dot[0]; for (ich = 1; ich < mpchain; ich++) energy += kt * etap[ich] + 0.5*etap_mass[ich]*etap_dot[ich]*etap_dot[ich]; } // extra contribution from strain energy if (deviatoric_flag) energy += compute_strain_energy(); } return energy; } /* ---------------------------------------------------------------------- return a single element of the following vectors, in this order: eta[tchain], eta_dot[tchain], omega[ndof], omega_dot[ndof] etap[pchain], etap_dot[pchain], PE_eta[tchain], KE_eta_dot[tchain] PE_omega[ndof], KE_omega_dot[ndof], PE_etap[pchain], KE_etap_dot[pchain] PE_strain[1] if no thermostat exists, related quantities are omitted from the list if no barostat exists, related quantities are omitted from the list ndof = 1,3,6 degrees of freedom for pstyle = ISO,ANISO,TRI ------------------------------------------------------------------------- */ double FixNH::compute_vector(int n) { int ilen; if (tstat_flag) { ilen = mtchain; if (n < ilen) return eta[n]; n -= ilen; ilen = mtchain; if (n < ilen) return eta_dot[n]; n -= ilen; } if (pstat_flag) { if (pstyle == ISO) { ilen = 1; if (n < ilen) return omega[n]; n -= ilen; } else if (pstyle == ANISO) { ilen = 3; if (n < ilen) return omega[n]; n -= ilen; } else { ilen = 6; if (n < ilen) return omega[n]; n -= ilen; } if (pstyle == ISO) { ilen = 1; if (n < ilen) return omega_dot[n]; n -= ilen; } else if (pstyle == ANISO) { ilen = 3; if (n < ilen) return omega_dot[n]; n -= ilen; } else { ilen = 6; if (n < ilen) return omega_dot[n]; n -= ilen; } if (mpchain) { ilen = mpchain; if (n < ilen) return etap[n]; n -= ilen; ilen = mpchain; if (n < ilen) return etap_dot[n]; n -= ilen; } } double volume; double kt = boltz * t_target; double lkt_press = kt; int ich; if (dimension == 3) volume = domain->xprd * domain->yprd * domain->zprd; else volume = domain->xprd * domain->yprd; if (tstat_flag) { ilen = mtchain; if (n < ilen) { ich = n; if (ich == 0) return ke_target * eta[0]; else return kt * eta[ich]; } n -= ilen; ilen = mtchain; if (n < ilen) { ich = n; if (ich == 0) return 0.5*eta_mass[0]*eta_dot[0]*eta_dot[0]; else return 0.5*eta_mass[ich]*eta_dot[ich]*eta_dot[ich]; } n -= ilen; } if (pstat_flag) { if (pstyle == ISO) { ilen = 1; if (n < ilen) return p_hydro*(volume-vol0) / nktv2p; n -= ilen; } else if (pstyle == ANISO) { ilen = 3; if (n < ilen) if (p_flag[n]) return p_hydro*(volume-vol0) / (pdim*nktv2p); else return 0.0; n -= ilen; } else { ilen = 6; if (n < ilen) if (n > 2) return 0.0; else if (p_flag[n]) return p_hydro*(volume-vol0) / (pdim*nktv2p); else return 0.0; n -= ilen; } if (pstyle == ISO) { ilen = 1; if (n < ilen) return pdim*0.5*omega_dot[n]*omega_dot[n]*omega_mass[n]; n -= ilen; } else if (pstyle == ANISO) { ilen = 3; if (n < ilen) if (p_flag[n]) return 0.5*omega_dot[n]*omega_dot[n]*omega_mass[n]; else return 0.0; n -= ilen; } else { ilen = 6; if (n < ilen) if (p_flag[n]) return 0.5*omega_dot[n]*omega_dot[n]*omega_mass[n]; else return 0.0; n -= ilen; } if (mpchain) { ilen = mpchain; if (n < ilen) { ich = n; if (ich == 0) return lkt_press * etap[0]; else return kt * etap[ich]; } n -= ilen; ilen = mpchain; if (n < ilen) { ich = n; if (ich == 0) return 0.5*etap_mass[0]*etap_dot[0]*etap_dot[0]; else return 0.5*etap_mass[ich]*etap_dot[ich]*etap_dot[ich]; } n -= ilen; } if (deviatoric_flag) { ilen = 1; if (n < ilen) return compute_strain_energy(); n -= ilen; } } return 0.0; } /* ---------------------------------------------------------------------- */ void FixNH::reset_target(double t_new) { t_start = t_stop = t_new; } /* ---------------------------------------------------------------------- */ void FixNH::reset_dt() { dtv = update->dt; dtf = 0.5 * update->dt * force->ftm2v; dthalf = 0.5 * update->dt; dt4 = 0.25 * update->dt; dt8 = 0.125 * update->dt; dto = dthalf; // If using respa, then remap is performed in innermost level if (strstr(update->integrate_style,"respa")) dto = 0.5*step_respa[0]; if (pstat_flag) pdrag_factor = 1.0 - (update->dt * p_freq_max * drag / nc_pchain); if (tstat_flag) tdrag_factor = 1.0 - (update->dt * t_freq * drag / nc_tchain); } /* ---------------------------------------------------------------------- perform half-step update of chain thermostat variables ------------------------------------------------------------------------- */ void FixNH::nhc_temp_integrate() { int ich; double expfac; double kecurrent = tdof * boltz * t_current; // Update masses, to preserve initial freq, if flag set if (eta_mass_flag) { eta_mass[0] = tdof * boltz * t_target / (t_freq*t_freq); for (int ich = 1; ich < mtchain; ich++) eta_mass[ich] = boltz * t_target / (t_freq*t_freq); } if (eta_mass[0] > 0.0) eta_dotdot[0] = (kecurrent - ke_target)/eta_mass[0]; else eta_dotdot[0] = 0.0; double ncfac = 1.0/nc_tchain; for (int iloop = 0; iloop < nc_tchain; iloop++) { for (ich = mtchain-1; ich > 0; ich--) { expfac = exp(-ncfac*dt8*eta_dot[ich+1]); eta_dot[ich] *= expfac; eta_dot[ich] += eta_dotdot[ich] * ncfac*dt4; eta_dot[ich] *= tdrag_factor; eta_dot[ich] *= expfac; } expfac = exp(-ncfac*dt8*eta_dot[1]); eta_dot[0] *= expfac; eta_dot[0] += eta_dotdot[0] * ncfac*dt4; eta_dot[0] *= tdrag_factor; eta_dot[0] *= expfac; factor_eta = exp(-ncfac*dthalf*eta_dot[0]); nh_v_temp(); // rescale temperature due to velocity scaling // should not be necessary to explicitly recompute the temperature t_current *= factor_eta*factor_eta; kecurrent = tdof * boltz * t_current; if (eta_mass[0] > 0.0) eta_dotdot[0] = (kecurrent - ke_target)/eta_mass[0]; else eta_dotdot[0] = 0.0; for (ich = 0; ich < mtchain; ich++) eta[ich] += ncfac*dthalf*eta_dot[ich]; eta_dot[0] *= expfac; eta_dot[0] += eta_dotdot[0] * ncfac*dt4; eta_dot[0] *= expfac; for (ich = 1; ich < mtchain; ich++) { expfac = exp(-ncfac*dt8*eta_dot[ich+1]); eta_dot[ich] *= expfac; eta_dotdot[ich] = (eta_mass[ich-1]*eta_dot[ich-1]*eta_dot[ich-1] - boltz * t_target)/eta_mass[ich]; eta_dot[ich] += eta_dotdot[ich] * ncfac*dt4; eta_dot[ich] *= expfac; } } } /* ---------------------------------------------------------------------- perform half-step update of chain thermostat variables for barostat scale barostat velocities ------------------------------------------------------------------------- */ void FixNH::nhc_press_integrate() { int ich,i; double expfac,factor_etap,kecurrent; double kt = boltz * t_target; double lkt_press = kt; // Update masses, to preserve initial freq, if flag set if (omega_mass_flag) { double nkt = atom->natoms * kt; for (int i = 0; i < 3; i++) if (p_flag[i]) omega_mass[i] = nkt/(p_freq[i]*p_freq[i]); if (pstyle == TRICLINIC) { for (int i = 3; i < 6; i++) if (p_flag[i]) omega_mass[i] = nkt/(p_freq[i]*p_freq[i]); } } if (etap_mass_flag) { if (mpchain) { etap_mass[0] = boltz * t_target / (p_freq_max*p_freq_max); for (int ich = 1; ich < mpchain; ich++) etap_mass[ich] = boltz * t_target / (p_freq_max*p_freq_max); for (int ich = 1; ich < mpchain; ich++) etap_dotdot[ich] = (etap_mass[ich-1]*etap_dot[ich-1]*etap_dot[ich-1] - boltz * t_target) / etap_mass[ich]; } } kecurrent = 0.0; for (i = 0; i < 3; i++) if (p_flag[i]) kecurrent += omega_mass[i]*omega_dot[i]*omega_dot[i]; if (pstyle == TRICLINIC) { for (i = 3; i < 6; i++) if (p_flag[i]) kecurrent += omega_mass[i]*omega_dot[i]*omega_dot[i]; } etap_dotdot[0] = (kecurrent - lkt_press)/etap_mass[0]; double ncfac = 1.0/nc_pchain; for (int iloop = 0; iloop < nc_pchain; iloop++) { for (ich = mpchain-1; ich > 0; ich--) { expfac = exp(-ncfac*dt8*etap_dot[ich+1]); etap_dot[ich] *= expfac; etap_dot[ich] += etap_dotdot[ich] * ncfac*dt4; etap_dot[ich] *= pdrag_factor; etap_dot[ich] *= expfac; } expfac = exp(-ncfac*dt8*etap_dot[1]); etap_dot[0] *= expfac; etap_dot[0] += etap_dotdot[0] * ncfac*dt4; etap_dot[0] *= pdrag_factor; etap_dot[0] *= expfac; for (ich = 0; ich < mpchain; ich++) etap[ich] += ncfac*dthalf*etap_dot[ich]; factor_etap = exp(-ncfac*dthalf*etap_dot[0]); for (i = 0; i < 3; i++) if (p_flag[i]) omega_dot[i] *= factor_etap; if (pstyle == TRICLINIC) { for (i = 3; i < 6; i++) if (p_flag[i]) omega_dot[i] *= factor_etap; } kecurrent = 0.0; for (i = 0; i < 3; i++) if (p_flag[i]) kecurrent += omega_mass[i]*omega_dot[i]*omega_dot[i]; if (pstyle == TRICLINIC) { for (i = 3; i < 6; i++) if (p_flag[i]) kecurrent += omega_mass[i]*omega_dot[i]*omega_dot[i]; } etap_dotdot[0] = (kecurrent - lkt_press)/etap_mass[0]; etap_dot[0] *= expfac; etap_dot[0] += etap_dotdot[0] * ncfac*dt4; etap_dot[0] *= expfac; for (ich = 1; ich < mpchain; ich++) { expfac = exp(-ncfac*dt8*etap_dot[ich+1]); etap_dot[ich] *= expfac; etap_dotdot[ich] = (etap_mass[ich-1]*etap_dot[ich-1]*etap_dot[ich-1] - boltz*t_target) / etap_mass[ich]; etap_dot[ich] += etap_dotdot[ich] * ncfac*dt4; etap_dot[ich] *= expfac; } } } /* ---------------------------------------------------------------------- perform half-step barostat scaling of velocities -----------------------------------------------------------------------*/ void FixNH::nh_v_press() { double factor[3]; double **v = atom->v; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; factor[0] = exp(-dt4*(omega_dot[0]+mtk_term2)); factor[1] = exp(-dt4*(omega_dot[1]+mtk_term2)); factor[2] = exp(-dt4*(omega_dot[2]+mtk_term2)); if (which == NOBIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { v[i][0] *= factor[0]; v[i][1] *= factor[1]; v[i][2] *= factor[2]; if (pstyle == TRICLINIC) { v[i][0] += -dthalf*(v[i][1]*omega_dot[5] + v[i][2]*omega_dot[4]); v[i][1] += -dthalf*v[i][2]*omega_dot[3]; } v[i][0] *= factor[0]; v[i][1] *= factor[1]; v[i][2] *= factor[2]; } } } else if (which == BIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { temperature->remove_bias(i,v[i]); v[i][0] *= factor[0]; v[i][1] *= factor[1]; v[i][2] *= factor[2]; if (pstyle == TRICLINIC) { v[i][0] += -dthalf*(v[i][1]*omega_dot[5] + v[i][2]*omega_dot[4]); v[i][1] += -dthalf*v[i][2]*omega_dot[3]; } v[i][0] *= factor[0]; v[i][1] *= factor[1]; v[i][2] *= factor[2]; temperature->restore_bias(i,v[i]); } } } } /* ---------------------------------------------------------------------- perform half-step update of velocities -----------------------------------------------------------------------*/ void FixNH::nve_v() { double dtfm; double **v = atom->v; double **f = atom->f; double *rmass = atom->rmass; double *mass = atom->mass; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; if (rmass) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { dtfm = dtf / rmass[i]; v[i][0] += dtfm*f[i][0]; v[i][1] += dtfm*f[i][1]; v[i][2] += dtfm*f[i][2]; } } } else { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { dtfm = dtf / mass[type[i]]; v[i][0] += dtfm*f[i][0]; v[i][1] += dtfm*f[i][1]; v[i][2] += dtfm*f[i][2]; } } } } /* ---------------------------------------------------------------------- perform full-step update of positions -----------------------------------------------------------------------*/ void FixNH::nve_x() { double **x = atom->x; double **v = atom->v; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; // x update by full step only for atoms in group for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { x[i][0] += dtv * v[i][0]; x[i][1] += dtv * v[i][1]; x[i][2] += dtv * v[i][2]; } } } /* ---------------------------------------------------------------------- perform half-step thermostat scaling of velocities -----------------------------------------------------------------------*/ void FixNH::nh_v_temp() { double **v = atom->v; int *mask = atom->mask; int nlocal = atom->nlocal; if (igroup == atom->firstgroup) nlocal = atom->nfirst; if (which == NOBIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { v[i][0] *= factor_eta; v[i][1] *= factor_eta; v[i][2] *= factor_eta; } } } else if (which == BIAS) { for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { temperature->remove_bias(i,v[i]); v[i][0] *= factor_eta; v[i][1] *= factor_eta; v[i][2] *= factor_eta; temperature->restore_bias(i,v[i]); } } } } /* ---------------------------------------------------------------------- compute sigma tensor needed whenever p_target or h0_inv changes -----------------------------------------------------------------------*/ void FixNH::compute_sigma() { // if nreset_h0 > 0, reset vol0 and h0_inv // every nreset_h0 timesteps if (nreset_h0 > 0) { int delta = update->ntimestep - update->beginstep; if (delta % nreset_h0 == 0) { if (dimension == 3) vol0 = domain->xprd * domain->yprd * domain->zprd; else vol0 = domain->xprd * domain->yprd; h0_inv[0] = domain->h_inv[0]; h0_inv[1] = domain->h_inv[1]; h0_inv[2] = domain->h_inv[2]; h0_inv[3] = domain->h_inv[3]; h0_inv[4] = domain->h_inv[4]; h0_inv[5] = domain->h_inv[5]; } } // generate upper-triangular half of // sigma = vol0*h0inv*(p_target-p_hydro)*h0inv^t // units of sigma are are PV/L^2 e.g. atm.A // // [ 0 5 4 ] [ 0 5 4 ] [ 0 5 4 ] [ 0 - - ] // [ 5 1 3 ] = [ - 1 3 ] [ 5 1 3 ] [ 5 1 - ] // [ 4 3 2 ] [ - - 2 ] [ 4 3 2 ] [ 4 3 2 ] sigma[0] = vol0*(h0_inv[0]*((p_target[0]-p_hydro)*h0_inv[0] + p_target[5]*h0_inv[5]+p_target[4]*h0_inv[4]) + h0_inv[5]*(p_target[5]*h0_inv[0] + (p_target[1]-p_hydro)*h0_inv[5]+p_target[3]*h0_inv[4]) + h0_inv[4]*(p_target[4]*h0_inv[0]+p_target[3]*h0_inv[5] + (p_target[2]-p_hydro)*h0_inv[4])); sigma[1] = vol0*(h0_inv[1]*((p_target[1]-p_hydro)*h0_inv[1] + p_target[3]*h0_inv[3]) + h0_inv[3]*(p_target[3]*h0_inv[1] + (p_target[2]-p_hydro)*h0_inv[3])); sigma[2] = vol0*(h0_inv[2]*((p_target[2]-p_hydro)*h0_inv[2])); sigma[3] = vol0*(h0_inv[1]*(p_target[3]*h0_inv[2]) + h0_inv[3]*((p_target[2]-p_hydro)*h0_inv[2])); sigma[4] = vol0*(h0_inv[0]*(p_target[4]*h0_inv[2]) + h0_inv[5]*(p_target[3]*h0_inv[2]) + h0_inv[4]*((p_target[2]-p_hydro)*h0_inv[2])); sigma[5] = vol0*(h0_inv[0]*(p_target[5]*h0_inv[1]+p_target[4]*h0_inv[3]) + h0_inv[5]*((p_target[1]-p_hydro)*h0_inv[1]+p_target[3]*h0_inv[3]) + h0_inv[4]*(p_target[3]*h0_inv[1]+(p_target[2]-p_hydro)*h0_inv[3])); } /* ---------------------------------------------------------------------- compute strain energy -----------------------------------------------------------------------*/ double FixNH::compute_strain_energy() { // compute strain energy = 0.5*Tr(sigma*h*h^t) in energy units double* h = domain->h; double d0,d1,d2; d0 = sigma[0]*(h[0]*h[0]+h[5]*h[5]+h[4]*h[4]) + sigma[5]*( h[1]*h[5]+h[3]*h[4]) + sigma[4]*( h[2]*h[4]); d1 = sigma[5]*( h[5]*h[1]+h[4]*h[3]) + sigma[1]*( h[1]*h[1]+h[3]*h[3]) + sigma[3]*( h[2]*h[3]); d2 = sigma[4]*( h[4]*h[2]) + sigma[3]*( h[3]*h[2]) + sigma[2]*( h[2]*h[2]); double energy = 0.5*(d0+d1+d2)/nktv2p; return energy; } /* ---------------------------------------------------------------------- compute deviatoric barostat force = h*sigma*h^t -----------------------------------------------------------------------*/ void FixNH::compute_deviatoric() { // generate upper-triangular part of h*sigma*h^t // units of fdev are are PV, e.g. atm*A^3 // [ 0 5 4 ] [ 0 5 4 ] [ 0 5 4 ] [ 0 - - ] // [ 5 1 3 ] = [ - 1 3 ] [ 5 1 3 ] [ 5 1 - ] // [ 4 3 2 ] [ - - 2 ] [ 4 3 2 ] [ 4 3 2 ] double* h = domain->h; fdev[0] = h[0]*(sigma[0]*h[0]+sigma[5]*h[5]+sigma[4]*h[4]) + h[5]*(sigma[5]*h[0]+sigma[1]*h[5]+sigma[3]*h[4]) + h[4]*(sigma[4]*h[0]+sigma[3]*h[5]+sigma[2]*h[4]); fdev[1] = h[1]*( sigma[1]*h[1]+sigma[3]*h[3]) + h[3]*( sigma[3]*h[1]+sigma[2]*h[3]); fdev[2] = h[2]*( sigma[2]*h[2]); fdev[3] = h[1]*( sigma[3]*h[2]) + h[3]*( sigma[2]*h[2]); fdev[4] = h[0]*( sigma[4]*h[2]) + h[5]*( sigma[3]*h[2]) + h[4]*( sigma[2]*h[2]); fdev[5] = h[0]*( sigma[5]*h[1]+sigma[4]*h[3]) + h[5]*( sigma[1]*h[1]+sigma[3]*h[3]) + h[4]*( sigma[3]*h[1]+sigma[2]*h[3]); } /* ---------------------------------------------------------------------- compute target temperature and kinetic energy -----------------------------------------------------------------------*/ void FixNH::compute_temp_target() { double delta = update->ntimestep - update->beginstep; if (update->endstep > update->beginstep) delta /= update->endstep - update->beginstep; else delta = 0.0; t_target = t_start + delta * (t_stop-t_start); ke_target = tdof * boltz * t_target; } /* ---------------------------------------------------------------------- compute hydrostatic target pressure -----------------------------------------------------------------------*/ void FixNH::compute_press_target() { double delta = update->ntimestep - update->beginstep; if (update->endstep > update->beginstep) delta /= update->endstep - update->beginstep; else delta = 0.0; p_hydro = 0.0; for (int i = 0; i < 3; i++) if (p_flag[i]) { p_target[i] = p_start[i] + delta * (p_stop[i]-p_start[i]); p_hydro += p_target[i]; } p_hydro /= pdim; if (pstyle == TRICLINIC) for (int i = 3; i < 6; i++) p_target[i] = p_start[i] + delta * (p_stop[i]-p_start[i]); // if deviatoric, recompute sigma each time p_target changes if (deviatoric_flag) compute_sigma(); } /* ---------------------------------------------------------------------- update omega_dot, omega -----------------------------------------------------------------------*/ void FixNH::nh_omega_dot() { double f_omega,volume; if (dimension == 3) volume = domain->xprd*domain->yprd*domain->zprd; else volume = domain->xprd*domain->yprd; if (deviatoric_flag) compute_deviatoric(); mtk_term1 = 0.0; if (mtk_flag) if (pstyle == ISO) { mtk_term1 = tdof * boltz * t_current; mtk_term1 /= pdim * atom->natoms; } else { double *mvv_current = temperature->vector; for (int i = 0; i < 3; i++) if (p_flag[i]) mtk_term1 += mvv_current[i]; mtk_term1 /= pdim * atom->natoms; } for (int i = 0; i < 3; i++) if (p_flag[i]) { f_omega = (p_current[i]-p_hydro)*volume / (omega_mass[i] * nktv2p) + mtk_term1 / omega_mass[i]; if (deviatoric_flag) f_omega -= fdev[i]/(omega_mass[i] * nktv2p); omega_dot[i] += f_omega*dthalf; omega_dot[i] *= pdrag_factor; } mtk_term2 = 0.0; if (mtk_flag) { for (int i = 0; i < 3; i++) if (p_flag[i]) mtk_term2 += omega_dot[i]; mtk_term2 /= pdim * atom->natoms; } if (pstyle == TRICLINIC) { for (int i = 3; i < 6; i++) { if (p_flag[i]) { f_omega = p_current[i]*volume/(omega_mass[i] * nktv2p); if (deviatoric_flag) f_omega -= fdev[i]/(omega_mass[i] * nktv2p); omega_dot[i] += f_omega*dthalf; omega_dot[i] *= pdrag_factor; } } } } /* ---------------------------------------------------------------------- if any tilt ratios exceed 0.5, set flip = 1 & compute new tilt_flip values do not flip in x or y if non-periodic when yz flips and xy is non-zero, xz must also change this is to keep the edge vectors of the flipped shape matrix an integer combination of the edge vectors of the unflipped shape matrix perform irregular on atoms in lamda coords to get atoms to new procs ------------------------------------------------------------------------- */ void FixNH::pre_exchange() { double xprd = domain->xprd; double yprd = domain->yprd; // flip is triggered when tilt exceeds 0.5 by an amount DELTAFLIP // this avoids immediate re-flipping due to tilt oscillations double xtiltmax = (0.5+DELTAFLIP)*xprd; double ytiltmax = (0.5+DELTAFLIP)*yprd; int flip = 0; if (domain->yperiodic) { if (domain->yz < -ytiltmax) { flip = 1; domain->yz += yprd; domain->xz += domain->xy; } else if (domain->yz >= ytiltmax) { flip = 1; domain->yz -= yprd; domain->xz -= domain->xy; } } if (domain->xperiodic) { if (domain->xz < -xtiltmax) { flip = 1; domain->xz += xprd; } else if (domain->xz >= xtiltmax) { flip = 1; domain->xz -= xprd; } if (domain->xy < -xtiltmax) { flip = 1; domain->xy += xprd; } else if (domain->xy >= xtiltmax) { flip = 1; domain->xy -= xprd; } } if (flip) { domain->set_global_box(); domain->set_local_box(); double **x = atom->x; int *image = atom->image; int nlocal = atom->nlocal; for (int i = 0; i < nlocal; i++) domain->remap(x[i],image[i]); domain->x2lamda(atom->nlocal); irregular->migrate_atoms(); domain->lamda2x(atom->nlocal); } }