/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: G. Ziegenhain, gerolf@ziegenhain.com Copyright (C) 2007 ------------------------------------------------------------------------- */ #include "string.h" #include "compute_ackland_atom.h" #include "atom.h" #include "update.h" #include "modify.h" #include "neighbor.h" #include "neigh_list.h" #include "neigh_request.h" #include "force.h" #include "pair.h" #include "comm.h" #include "memory.h" #include "error.h" #include using namespace LAMMPS_NS; enum{UNKNOWN,BCC,FCC,HCP,ICO}; /* ---------------------------------------------------------------------- */ ComputeAcklandAtom::ComputeAcklandAtom(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg) { if (narg != 3) error->all(FLERR,"Illegal compute ackland/atom command"); peratom_flag = 1; size_peratom_cols = 0; nmax = 0; structure = NULL; maxneigh = 0; distsq = NULL; nearest = NULL; nearest_n0 = NULL; nearest_n1 = NULL; } /* ---------------------------------------------------------------------- */ ComputeAcklandAtom::~ComputeAcklandAtom() { memory->destroy(structure); memory->destroy(distsq); memory->destroy(nearest); memory->destroy(nearest_n0); memory->destroy(nearest_n1); } /* ---------------------------------------------------------------------- */ void ComputeAcklandAtom::init() { // need an occasional full neighbor list int irequest = neighbor->request(this,instance_me); neighbor->requests[irequest]->pair = 0; neighbor->requests[irequest]->compute = 1; neighbor->requests[irequest]->half = 0; neighbor->requests[irequest]->full = 1; neighbor->requests[irequest]->occasional = 1; int count = 0; for (int i = 0; i < modify->ncompute; i++) if (strcmp(modify->compute[i]->style,"ackland/atom") == 0) count++; if (count > 1 && comm->me == 0) error->warning(FLERR,"More than one compute ackland/atom"); } /* ---------------------------------------------------------------------- */ void ComputeAcklandAtom::init_list(int id, NeighList *ptr) { list = ptr; } /* ---------------------------------------------------------------------- */ void ComputeAcklandAtom::compute_peratom() { int i,j,ii,jj,k,n,inum,jnum; double xtmp,ytmp,ztmp,delx,dely,delz,rsq; int *ilist,*jlist,*numneigh,**firstneigh; int chi[8]; invoked_peratom = update->ntimestep; // grow structure array if necessary if (atom->nlocal > nmax) { memory->destroy(structure); nmax = atom->nmax; memory->create(structure,nmax,"compute/ackland/atom:ackland"); vector_atom = structure; } // invoke full neighbor list (will copy or build if necessary) neighbor->build_one(list); inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // compute structure parameter for each atom in group // use full neighbor list double **x = atom->x; int *mask = atom->mask; double cutsq = force->pair->cutforce * force->pair->cutforce; for (ii = 0; ii < inum; ii++) { i = ilist[ii]; if (mask[i] & groupbit) { xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; jlist = firstneigh[i]; jnum = numneigh[i]; // ensure distsq and nearest arrays are long enough if (jnum > maxneigh) { memory->destroy(distsq); memory->destroy(nearest); memory->destroy(nearest_n0); memory->destroy(nearest_n1); maxneigh = jnum; memory->create(distsq,maxneigh,"compute/ackland/atom:distsq"); memory->create(nearest,maxneigh,"compute/ackland/atom:nearest"); memory->create(nearest_n0,maxneigh,"compute/ackland/atom:nearest_n0"); memory->create(nearest_n1,maxneigh,"compute/ackland/atom:nearest_n1"); } // loop over list of all neighbors within force cutoff // distsq[] = distance sq to each // nearest[] = atom indices of neighbors n = 0; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; if (rsq < cutsq) { distsq[n] = rsq; nearest[n++] = j; } } // Select 6 nearest neighbors select2(6,n,distsq,nearest); // Mean squared separation double r0_sq = 0.; for (j = 0; j < 6; j++) r0_sq += distsq[j]; r0_sq /= 6.; // n0 near neighbors with: distsq<1.45*r0_sq // n1 near neighbors with: distsq<1.55*r0_sq double n0_dist_sq = 1.45*r0_sq, n1_dist_sq = 1.55*r0_sq; int n0 = 0, n1 = 0; for (j = 0; j < n; j++) { if (distsq[j] < n1_dist_sq) { nearest_n1[n1++] = nearest[j]; if (distsq[j] < n0_dist_sq) { nearest_n0[n0++] = nearest[j]; } } } // Evaluate all angles <(r_ij,rik) forall n0 particles with: // distsq < 1.45*r0_sq double bond_angle; double norm_j, norm_k; chi[0] = chi[1] = chi[2] = chi[3] = chi[4] = chi[5] = chi[6] = chi[7] = 0; double x_ij, y_ij, z_ij, x_ik, y_ik, z_ik; for (j = 0; j < n0; j++) { x_ij = x[i][0]-x[nearest_n0[j]][0]; y_ij = x[i][1]-x[nearest_n0[j]][1]; z_ij = x[i][2]-x[nearest_n0[j]][2]; norm_j = sqrt (x_ij*x_ij + y_ij*y_ij + z_ij*z_ij); if (norm_j <= 0.) continue; for (k = j+1; k < n0; k++) { x_ik = x[i][0]-x[nearest_n0[k]][0]; y_ik = x[i][1]-x[nearest_n0[k]][1]; z_ik = x[i][2]-x[nearest_n0[k]][2]; norm_k = sqrt (x_ik*x_ik + y_ik*y_ik + z_ik*z_ik); if (norm_k <= 0.) continue; bond_angle = (x_ij*x_ik + y_ij*y_ik + z_ij*z_ik) / (norm_j*norm_k); // Histogram for identifying the relevant peaks if (bond_angle < -0.945) chi[0]++; else if (bond_angle < -0.915) chi[1]++; else if (bond_angle < -0.755) chi[2]++; else if (bond_angle < -0.195) chi[3]++; else if (bond_angle < 0.195) chi[4]++; else if (bond_angle < 0.245) chi[5]++; else if (bond_angle < 0.795) chi[6]++; else chi[7]++; } } if (chi[7] > 0. || n0 < 11) structure[i] = UNKNOWN; else if (chi[0] == 7) structure[i] = BCC; else if (chi[0] == 6) structure[i] = FCC; else if (chi[0] == 3) structure[i] = HCP; else { // Deviations from the different lattice structures double delta_cp = fabs(1.-(double)chi[6]/24.); // ensure we do not get divide by zero // and if we will, make delta_bcc irrelevant double delta_bcc = delta_cp + 1.0; if ((chi[5]+chi[6]-chi[4]) != 0) // note that chi[7] presumed zero delta_bcc = 0.35*chi[4]/(double)(chi[5]+chi[6]-chi[4]); double delta_fcc = 0.61*(fabs((double)(chi[0]+chi[1]-6.)) +(double)chi[2])/6.0; double delta_hcp = (fabs((double)chi[0]-3.)+fabs((double)chi[0] +(double)chi[1]+(double)chi[2]+(double)chi[3] -9.0))/12.0; // Identification of the local structure according to the reference if (delta_bcc >= 0.1 && delta_cp >= 0.1 && delta_fcc >= 0.1 && delta_hcp >= 0.1) structure[i] = UNKNOWN; // not part of Ackland-Jones 2006; included for backward compatibility if (chi[4] < 3. && n1 == 12) structure[i] = ICO; else { if (delta_bcc <= delta_cp && n1 > 10 && n1 < 13) structure[i] = BCC; else { if (n0 > 12) structure[i] = UNKNOWN; else { if (delta_fcc < delta_hcp) structure[i] = FCC; else structure[i] = HCP; } } } } } else structure[i] = 0.0; } } /* ---------------------------------------------------------------------- 2 select routines from Numerical Recipes (slightly modified) find k smallest values in array of length n 2nd routine sorts auxiliary array at same time ------------------------------------------------------------------------- */ #define SWAP(a,b) tmp = a; a = b; b = tmp; #define ISWAP(a,b) itmp = a; a = b; b = itmp; void ComputeAcklandAtom::select(int k, int n, double *arr) { int i,ir,j,l,mid; double a,tmp; arr--; l = 1; ir = n; for (;;) { if (ir <= l+1) { if (ir == l+1 && arr[ir] < arr[l]) { SWAP(arr[l],arr[ir]) } return; } else { mid=(l+ir) >> 1; SWAP(arr[mid],arr[l+1]) if (arr[l] > arr[ir]) { SWAP(arr[l],arr[ir]) } if (arr[l+1] > arr[ir]) { SWAP(arr[l+1],arr[ir]) } if (arr[l] > arr[l+1]) { SWAP(arr[l],arr[l+1]) } i = l+1; j = ir; a = arr[l+1]; for (;;) { do i++; while (arr[i] < a); do j--; while (arr[j] > a); if (j < i) break; SWAP(arr[i],arr[j]) } arr[l+1] = arr[j]; arr[j] = a; if (j >= k) ir = j-1; if (j <= k) l = i; } } } /* ---------------------------------------------------------------------- */ void ComputeAcklandAtom::select2(int k, int n, double *arr, int *iarr) { int i,ir,j,l,mid,ia,itmp; double a,tmp; arr--; iarr--; l = 1; ir = n; for (;;) { if (ir <= l+1) { if (ir == l+1 && arr[ir] < arr[l]) { SWAP(arr[l],arr[ir]) ISWAP(iarr[l],iarr[ir]) } return; } else { mid=(l+ir) >> 1; SWAP(arr[mid],arr[l+1]) ISWAP(iarr[mid],iarr[l+1]) if (arr[l] > arr[ir]) { SWAP(arr[l],arr[ir]) ISWAP(iarr[l],iarr[ir]) } if (arr[l+1] > arr[ir]) { SWAP(arr[l+1],arr[ir]) ISWAP(iarr[l+1],iarr[ir]) } if (arr[l] > arr[l+1]) { SWAP(arr[l],arr[l+1]) ISWAP(iarr[l],iarr[l+1]) } i = l+1; j = ir; a = arr[l+1]; ia = iarr[l+1]; for (;;) { do i++; while (arr[i] < a); do j--; while (arr[j] > a); if (j < i) break; SWAP(arr[i],arr[j]) ISWAP(iarr[i],iarr[j]) } arr[l+1] = arr[j]; arr[j] = a; iarr[l+1] = iarr[j]; iarr[j] = ia; if (j >= k) ir = j-1; if (j <= k) l = i; } } } /* ---------------------------------------------------------------------- memory usage of local atom-based array ------------------------------------------------------------------------- */ double ComputeAcklandAtom::memory_usage() { double bytes = nmax * sizeof(double); return bytes; }