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Chapter 1

DL MESO General Information

1.1 Description

DL MESO is a general purpose mesoscopic simulation package developed at Daresbury Laboratory by Dr

Michael Seaton under the auspices of the Engineering and Physical Sciences Research Council (EPSRC) for

the EPSRC’s Collaborative Computational Project for the Computer Simulation of Condensed Phases (CCP5).

The package is the property of the Science and Technology Facilities Council (STFC).

DL MESO is issued free under licence to academic institutions pursuing scientific research of a non-commercial

nature. All recipients of the code must first agree to the terms and conditions of the licence and register with us

to be kept aware of new developments and discovered bugs. Commercial organisations interested in acquiring

the package should approach the Scientific Computing Department, STFC Daresbury Laboratory in the first

instance. Daresbury Laboratory is the sole centre for distribution of the package. Under no account is it to be

redistributed to third parties without consent of the owners.

DL MESO contains two mesoscale simulation methods:

� Lattice Boltzmann Equation (included with version 1.0 and later)

� Dissipative Particle Dynamics (included with version 2.0 and later)

1.2 Functionality

The following is a list of the features that DL MESO currently supports. Users are reminded that we are

interested in hearing what other features could be usefully incorporated. We obviously have ideas of our own

and CCP5 strongly influences developments, but other input would be welcome nevertheless.

1.2.1 Lattice Boltzmann Equation

DL MESO LBE can simulate lattice-gas systems using the Lattice Boltzmann Equation (LBE). The following

properties and features are currently available:

� Multiple fluid components, solutes and coupled heat transfers[72]

� Collisions: Bhatnagar-Gross-Krook (BGK) single-relaxation-time[4] or Multiple-Relaxation-Time (MRT)[33,

8]

� Boundary conditions: Periodic, bounce-back (including stationary objects), constant pressure/velocity at

planar surfaces[73]

1



2 CHAPTER 1. DL MESO GENERAL INFORMATION

� Mesoscale interactions: Shan-Chen pseudopotential method[55, 56], Lishchuk continuum-based method[35]

� Initial conditions can either be determined by DL MESO LBE or specified by the user

1.2.2 Dissipative Particle Dynamics

DL MESO DPD can model DPD particles (‘beads’) with soft or hard potential fields, along with thermostatting

dissipative and random forces. The following properties and features are currently available:

� Choice of integrators/thermostats: standard Velocity Verlet, DPD Velocity Verlet[13], Lowe-Andersen[36],

Peters[47] and Stoyanov-Groot[62]

� Constant volume (NVT) or constant pressure (NPT) simulations with Berendsen[2] or Langevin[29]

barostats

� User selection of interaction lengths, conservative and dissipative force parameters for each species and

between unlike species

� Bond stretching, angles and dihedrals between beads in user-defined ‘molecules’

� Potentials: standard Groot-Warren DPD[16], density-dependent (many-body) DPD[46, 66], Lennard-

Jones[30], Weeks-Chandler-Andersen[69]

� Electrostatic potentials between charged beads using a modified Ewald summation[14]

� Boundaries: Periodic, hard reflecting walls with optional short-range repulsions[50], frozen particle walls,

Lees-Edwards periodic shearing boundaries[34]

� Initial conditions can either be determined by DL MESO DPD or specified by the user

1.3 Requirements

1.3.1 Software requirements

� Standard C++ Compiler for LBE source code, DL MESO LBE

� Standard Fortran90 Compiler for DPD source code, DL MESO DPD

� Message Passing Interface (if parallel execution required)

� JAVA 2 Version 1.4 or higher (if GUI is to be used)

� GNU Make (included in standard Unix/Linux distributions; can be installed for Windows)

1.3.2 System requirements

DL MESO is designed to work in both serial and parallel running; it can be run on standalone machines, clusters

and supercomputers. The code has been tested on Solaris, Windows XP, IBM p690+ HPCx, PowerPC 450 Blue

Gene/P and Cray XT4/XT6 HECToR machines.
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1.4 The DL MESO Directory Structure

The supplied version of DL MESO is a gzipped tar file, which unpacks as directory dl meso 2.x, where x is a

generation number. Beneath the top level of this directory are a number of subdirectories:

� LBE - containing the LBE source code

� DPD - containing the DPD source code

� JAVA - containing the GUI source code

� MAN - containing the DL MESO user manual

� DEMO - containing test cases for DL MESO

� WORK - an example ‘working directory’

1.5 Disclaimer

Neither STFC, CCP5 nor any of the authors of the DL MESO package guarantee that the package is free from

error. Neither do they accept responsibility for any loss or damage that results from its use.

1.6 Copyright

© STFC Daresbury Laboratory 2012

1.7 Authors

Dr Michael Seaton and Prof. William Smith

Scientific Computing Department

STFC Daresbury Laboratory

Warrington

WA4 4AD

United Kingdom

1.8 Suggestions and Bug Reports

We encourage users to send suggestions for improvements and new features for DL MESO, including bug reports

and subroutines, as well as any additional test cases that demonstrate its features. All of these should be sent

to michael.seaton@stfc.ac.uk





Chapter 2

The DL MESO GUI

2.1 Getting Started with the DL MESO GUI

The DL MESO GUI offers a convenient way of using the DL MESO package, although it is not an essential

tool for those who prefer command line operation: Appendix A provides details on compiling the DL MESO

program codes manually. Working with the GUI requires the availability of Java tools, particularly the javac

compiler and the java runner for Java 2 version 1.4 or later. These may be obtained from the java.sun.com

website.

To build the GUI, proceed as follows:

� Enter the DL MESO/JAVA directory.

� Type javac *.java to compile the source code.

� Type jar -cfm GUI.jar manifest.mf *.class to create the GUI.jar executable JAR file.

� Move to your working directory.

� Launch the GUI.

A Unix/Linux script called makegui that performs the build of the GUI can be found in the JAVA subdirectory.

Your working directory is the directory from which you wish to work when running DL MESO. Working there

will keep any files you generate separate from the DL MESO source files. Note in the current version of

DL MESO the working directory should be at the same directory level as the JAVA direction, i.e. within the

DL MESO top directory, and contain the executables of any external utilities required to set up input files and

gather or process output files from simulations. An example of such a working directory (called WORK) is present

under the DL MESO top directory; this includes a makefile to compile all of the external utilties which can be

invoked by the command make -f Makefile-utils.

In your working directory you can start the GUI with the command

� java -jar ../JAVA/GUI.jar

You may consider saving this command in a script for simple execution. An example script for Unix/Linux

called rungui is present in the WORK subdirectory.

Figure 2.1 shows the DL MESO GUI when it is started. Clicking the LBE and DPD buttons will produce the

Lattice Boltzmann and Dissipative Particle Dynamics panels respectively, which will guide you through setting

up input files, modifying and compiling the program code, running the simulation and gathering the results files

5



6 CHAPTER 2. THE DL MESO GUI

Figure 2.1: DL MESO GUI on startup

for plotting and visualization. The SPH button is for Smoothed Particle Hydrodynamic simulations, which will

be included in future versions of DL MESO: clicking on this button will currently produce a warning message.

This user manual can be read in Adobe Acrobat Reader (if installed) by clicking the Manual button, while

Help will advise you to visit the DL MESO website at www.ccp5.ac.uk/DL MESO.

2.2 Lattice Boltzmann and the DL MESO GUI

To access the LBE facilities in the DL MESO GUI, proceed as follows:

� Click the LBE button to get the LBE panel.

� Click the Define LBE System button and supply the required information. The file lbin.sys will be

created by the step.

� Click the Set LBE Space button to define the simulation space. The file lbin.spa will be created by

this step.

2.2.1 Defining the System

Figure 2.2 shows the Define LBE System panel with the rows for data entry labelled in red numbering. The

required data are as follows:

1. The required LBE model can be selected from the pull-down list: the D2Q9, D3Q15, D3Q19 and D3Q27

square lattice schemes are available. The tickbox can be selected to specify that the fluids in the system

should be treated as incompressible.

2. The collision/forcing type for the system can be selected out of BGK, BGK with Guo forcing, MRT

and MRT with Guo-like forcing.
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Figure 2.2: Define LBE System

3. The required mesophase interactions can be selected from the pull-down list: currently available options

include no interactions, Shan/Chen pseudopotential interactions, Shan/Chen interactions with surface

wetting and Lishchuk continuum-based interactions.

4. The number of grid points sets the size of the system. For 2D systems, the number of grid points in

the z direction must equal 1; selecting a two-dimensional lattice model greys out this box.

5. The total steps and the equilibration steps for the simulation.

6. the save span (number of timesteps between system outputs) and the boundary width for running

the parallel version of DL MESO LBE are given in this row. (The serial version by default automatically

resets the boundary width to zero.)

7. The output format for system snapshots is set using this pull-down list: VTK, Legacy VTK and Plot3D.

8. The sound speed (c) and kinetic viscosity (ν) are real-life quantities for the first (main) fluid. These

do not influence calculations at all but allow conversions between lattice and real units: the time step and

lattice spacing are given by ∆t = ν

c2(τf− 1
2 )

and ∆x =
√

3ν

c(τf− 1
2 )

respectively.

9. The specified top boundary speed (in lattice units), i.e. at the maximum y value for the grid. This

and similar properties only need to be specified if the boundary includes a fixed velocity; any specified

value will be ignored for periodic, bounce-back and fixed density conditions. Note that the z-component

will be greyed out for two-dimensional systems.

10. The specified bottom boundary speed (in lattice units), i.e. at the minimum y value for the grid.

11. The specified left boundary speed (in lattice units), i.e. at the minimum x value for the grid.

12. The specified right boundary speed (in lattice units), i.e. at the maximum x value for the grid.

13. The specified front boundary speed (in lattice units), i.e. at the maximum z value for the grid. For

two-dimensional systems this can be omitted and is thus greyed out.
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14. The specified back boundary speed (in lattice units), i.e. at the minimum z value for the grid. For

two-dimensional systems this can be omitted and is thus greyed out.

15. The noise magnitude only has an effect for initializing multiple phase simulations. DL MESO LBE may

include either a phase field parameter or no phase field parameter for systems with multiple phases;

neither mesophase algorithm requires it and thus this option is currently disabled.

16. The number of fluids (phases) can be increased if a multiple fluid system is to be studied: up to 6

fluids may be modelled in DL MESO LBE. The parameters and boundary conditions for the fluid(s) must

then be set by clicking the set fluid parameters button – see below for more details.

17. The number of solutes needs changing if solute parameters are required: if the number of solutes is

greater than zero (and up to 6), the number of fluids in the above row must be set to 0 or 1. If used, the

parameters and boundary conditions for the solutes must be set by clicking the set solute parameters

button – see below for more details.

18. The using temperature scalar box may be clicked yes if thermal systems are to be studied. If checked,

the thermal parameters must be set by clicking the set thermal parameters button – see below for

more details.

If a valid lbin.sys file already exists in the (current) working directory, the OPEN button can be clicked to

load its information into the GUI, which can then be viewed and edited. Once all the data in this window and

any pop-up windows for fluid, solute and thermal parameters are filled in, the SAVE button should be clicked

to write the lbin.sys file.

2.2.1.1 Fluid, solute and thermal parameters

Examples of the pop-up windows for fluid, solute and thermal parameters can be seen in Figure 2.3 with the

rows labelled in red numbering: multiple columns of dialogue boxes are made available for systems with multiple

fluids and/or solutes.

For fluids, the required data are as follows:

1. Body force x-axis: the x-component of body force on each fluid.

2. Body force y-axis: the y-component of body force on each fluid.

3. Body force z-axis: the z-component of body force on each fluid. (Greyed out for two-dimensional

systems.)

4. Boussinesq force x-axis: the x-component of the Boussinesq force parameter (~gβ) on each fluid.

5. Boussinesq force y-axis: the y-component of the Boussinesq force parameter on each fluid.

6. Boussinesq force z-axis: the z-component of the Boussinesq force parameter on each fluid. (Greyed

out for two-dimensional systems.)

7. The initial fluid densities are applied throughout the system and used to initialize LBE calculations.

8. The constant fluid density (ρ0) for incompressible systems: this property can also be used to define the

reference densities for Shan/Chen pseudopotentials and for initialising systems with fluid drops.

9. The fluid densities at the top boundary.

10. The fluid densities at the bottom boundary.

11. The fluid densities at the left boundary.
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(a) Fluid parameters (b) Solute parameters (c) Thermal parameters

Figure 2.3: Fluid, solute and thermal parameter pop-up windows

12. The fluid densities at the right boundary.

13. The fluid densities at the front boundary. (Greyed out for two-dimensional systems.)

14. The fluid densities at the back boundary. (Greyed out for two-dimensional systems.)

15. The relaxation time (τf ) for each fluid: these values should be greater than 0.5 to give non-zero kinetic

viscosities.

16. The bulk relaxation time (τf,bulk) for each fluid: these values are only used in multiple-relaxation-time

schemes to define the bulk viscosity and again should be greater than 0.5.

17. If more than one phase is being modelled, non-zero interaction parameters between the fluid species

are required (gab). The Shan/Chen algorithm can accept values of gab for both a = b and a 6= b, while the

Lishchuk algorithm only requires gab for a 6= b.

18. If the Shan-Chen pseudopotential algorithm with wetting is to be used, wall interaction parameters

between the fluid species and solid surfaces are required (ga,wall). If the Lishchuk continuum-based

algorithm is to be used, a non-zero segregation parameter (β) is required to ensure immiscible fluids

separate out from each other.

Solutes require the following data in the following row numbers:

1. The initial concentrations of the solutes throughout the system, as used for initialization.
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2. The solute concentrations at the top boundary.

3. The solute concentrations at the bottom boundary.

4. The solute concentrations at the left boundary.

5. The solute concentrations at the right boundary.

6. The solute concentrations at the front boundary. (Greyed out for two-dimensional systems.)

7. The solute concentrations at the back boundary. (Greyed out for two-dimensional systems.)

8. The relaxation time (τs) for each solute, representing diffusivities.

If selected for inclusion, the required thermal properties are:

1. The initial T (temperature) for the system.

2. The initial dT/dt (rate of change of temperature: related to heat transfers in or out) for the entire

system.

3. The Boussinesq high reference temperature (Th) for heat convection in the system.

4. The Boussinesq low reference temperature (Tl) for heat convection in the system.

5. The heat relaxation time (τt) for the system, which represents the thermal diffusivity.

6. The temperature and rate of temperature change at the top boundary.

7. The temperature and rate of temperature change at the bottom boundary.

8. The temperature and rate of temperature change at the left boundary.

9. The temperature and rate of temperature change at the right boundary.

10. The temperature and rate of temperature change at the front boundary. (This is greyed out for two-

dimensional systems.)

11. The temperature and rate of temperature change at the back boundary. (This is greyed out for two-

dimensional systems.)

After filling in all the required values, clicking the relevant save button (SAVE F, SAVE C or SAVE T)

will store the data in preparation for writing to the lbin.sys input file. The cancel buttons (CANCEL F,

CANCEL C and CANCEL T) will close the pop-ups without saving any values.

2.2.2 Defining the Space Properties

If this option is selected before saving the LBE system data, a warning message advising that the system should

be re-defined will appear.

Figure 2.4 shows the Set LBE Space panel with the rows for data entry labelled in red numbering. The following

data are required:

1. The top boundary condition can be selected using the pull-down list from:

� periodic

� on-grid bounce back

� mid-grid bounce back
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Figure 2.4: Set LBE Space

� fixed V (velocity), C (concentration) and T (temperature)

� fixed V and C, Neumann1 T

� fixed V and T, Neumann C

� fixed V, Neumann C and T

� fixed P (pressure or density), C and T

� fixed P and T, Neumann C

� fixed P and C, Neumann T

� fixed P, Neumann C and T

2. The bottom boundary condition can be selected using the pull-down list.

3. The left boundary condition can be selected using the pull-down list.

4. The right boundary condition can be selected using the pull-down list.

5. The front boundary condition can be selected using the pull-down list. This pull-down list will be

greyed out for two-dimensional systems.

6. The back boundary condition can be selected using the pull-down list. This pull-down list will be

greyed out for two-dimensional systems.

7. Solid obstacles can be added to the calculation space by selecting the bounce back (on-grid or mid-grid)

and obstacle types in the pull-down lists, entering its location on the grid and, if necessary, entering its

size, and clicking add obstacle.

� A single point will be located at (x0, y0, z0).

� A sphere is centred at (x0, y0, z0) and has radius r.

� A two-dimensional circle is centred at (x0, y0) and has radius r.

1For a property φ, DL MESO currently only calculates ∇φ = 0 by using on-grid bounce back on the related distribution
function.
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� A block has a vertex at (x0, y0, z0) and has size (dx, dy, dz): both z0 and dz can be omitted for

two-dimensional blocks.

Note that lattice points well within an obstacle are set as blank sites, i.e. they will be ignored in LBE

calculations.

8. The entire system can be set up as a porous solid by selecting the bounce back type, specifying a pore

fraction and clicking set pore to randomly select an appropriate number of solid lattice sites.

Clicking the Create button will write all the lattice space data to a lbin.spa file; any lattice point defined

more than once will hold its latest definition.

2.3 Dissipative Particle Dynamics and the DL MESO GUI

To access the DPD facilities in the DL MESO GUI, proceed as follows:

� Click the DPD button to get the DPD panel.

� Click the Define DPD System button and supply the required information. The CONTROL file will be

created by this step.

� Note that currently no simulation space settings or molecular structure data can be entered using the

GUI.

� Click EXIT to finish the settings.

2.3.1 Defining the System

Figure 2.5 shows the Define DPD System panel with the rows for data entry labelled in red numbering.

The required data are as follows:

1. The job header: a line of text up to 80 characters long describing the simulation.

2. The system volume: the pull-down list can be used to specify whether this is cubic or orthogonal, or

whether replication of a CONFIG file is required (nfold). If specifying a cubic volume, the total volume

should be specified, while orthogonal volumes require the sizes for all three dimensions and the nfold

setting requires integer values specifying the number of replications in each dimension.

3. The target temperature (kBT ) and pressure (P0) for the system. (The latter is greyed out if no barostat

is to be used.)

4. The maximum interaction cutoff (rc) for pairwise particle interactions and the many-body cutoff

(rd) for determining localized particle densities as used for many-body DPD.

5. If required, the electrostatic cutoff (re) for short-range electrostatic interactions and the surface cutoff

(zc) for interactions between particles and solid walls. (These are greyed out if not required.)

6. The size of the boundary halo for copying particle data from neighbouring subdomains or across periodic

boundaries and the size of each time step (∆t) for integrating the equations of motion.

7. The total steps required for the DPD simulation and the number of time steps required to equilibrate

the system (equilibration steps).
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8. The numbers of time steps to store system variables for rolling averages (stack interval) and between

rescaling of particle velocities to the desired system temperature during equilibration (temp scaling

interval). The latter can be set to zero if no temperature rescaling is required.

9. The starting time step (save start) and the number of time steps between saves (save interval) of

trajectory data to HISTORY files for later visualization. The latter can be set to zero if no trajectory data

are required.

10. The numbers of time steps between printing summaries in the OUTPUT file (print interval) and outputs

of statistical data (system energy, potential energies, pressure, temperature etc.) to a plottable CORREL

file (plot interval). The latter value can be set to zero if no plot file is required.

11. The number of time steps between dumps of system configurations to export files for simulation restarts

(dump interval) and the percentage variation in particle density (density var) to allow for unevenly

distributed systems.

12. The job time is the maximum (real) time that can be spent carrying out the DPD simulation: the close

time gives the time needed to write restart files and shut down the calculation in a controlled manner.

13. The restart key for the simulation: this can either be set to none for a new simulation, a full restart

to continue a previous run using export* files, a new run which takes a starting state (particle positions

and velocities) for a new simulation from export* files, and rescaled does the same as a new run but

additionally rescales the particle velocities to give the specified system temperature.

14. The system thermostat: the dissipative and random forces as defined for DPD with the standard (molec-

ular dynamics) form of the Velocity Verlet integrator (DPD/MD-VV) is the default, but recalculation of

dissipative forces at the end of each step (DPD/DPD-VV)[13], the Lowe-Andersen[36], Peters[47] and

Stoyanov-Groot[62] thermostats can also be selected. Values of γ for the DPD and Peters thermostats

and Γ for the Lowe-Andersen and Stoyanov-Groot thermostats can be specified elsewhere for each pair of

species, but an additional parameter for the Stoyanov-Groot thermostat should be set by clicking on set

thermostat – see below for more details.

15. The system barostat: no barostat is used by default, but Langevin[29] and Berendsen[2] barostats are

available in combination with all five thermostats. If either barostat is selected, its parameters can be set

by clicking on set barostat and the target system pressure can be specified.

16. The electrostatics scheme for the simulation: an Ewald sum method with Slater-type (exponential)

charge smearing[14] is available in DL MESO DPD. If selected, the short-range electrostatic cutoff can

be edited and the parameters for the Ewald sum and charge smearing can be specified by clicking on set

electrostatics.

17. The surfaces to be applied to the system: by default periodic boundary conditions are used, but alterna-

tive boundary conditions include hard walls with soft repulsions and specular reflection[50], walls of frozen

beads and Lees-Edwards shearing periodic boundaries. The boundaries with the specified condition can

be selected by clicking on set surfaces.

18. Switches to use global storage of bonds (global bonds), to ignore CONFIG files and to override

index numbers in a CONFIG file can be set using these tickboxes.

Note that the DPD code uses reduced units in which the unit of length is the particle size, the unit of mass

is the particle mass and the unit of energy is the primary energy parameter of the potential energy function.

From these the time unit may be derived. The temperature is defined to be 2
3 of the system kinetic energy.

If a valid CONTROL file already exists in the (current) working directory, the OPEN button can be clicked

to load its information into the GUI, which can then be viewed and edited. The CONTROL file for input into

DL MESO DPD is created by clicking the SAVE button.
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Figure 2.5: Define DPD System

2.3.1.1 Thermostat, barostat, electrostatic and surface parameters

Examples of the pop-up windows for thermostat, barostat, electrostatic and surface parameters can be seen in

Figure 2.6 with the rows labelled in red numbering: multiple columns of dialogue boxes are made available for

systems with multiple species.

The thermostat pop-up window is formatted as in Figure 2.6(a):

1. The type of thermostat to be used in the simulation.

2. Thermostat parameters: for the Stoyanov-Groot thermostat (currently the only type that requires an

additional parameter), a global coupling parameter for the Nosé-Hoover part (α) is required.

Figure 2.6(b) gives the layout for the barostat pop-up window:

1. The type of barostat to be used in the simulation.

2. Barostat parameters: for the Langevin barostat, a barostat relaxation time (τp) and piston drag

coefficient (γp) are required, while the Berendsen barostat requires the compressibility/relaxation

ratio ( βτp ).

3. This check box determines whether or not an isotropic system, i.e. one where pressure acts uniformly

in all dimensions, should be modelled. If unchecked, the barostat will act differently in each dimension

and the shape of the system will change over time.

The parameters for electrostatics can be given in the pop-up window shown in Figure 2.6(c):

1. The type of electrostatics to be used in the simulation.

2. Electrostatic parameters: for the Ewald sum with Slater-type smearing, the system coupling constant

(Γ), Ewald real-space convergence (α) and charge smearing (β) coefficients need to be specified.

3. The Ewald sum method also requires a reciprocal space (k-vector) range.



2.3. DISSIPATIVE PARTICLE DYNAMICS AND THE DL MESO GUI 15

(a) Thermostat parameters (b) Barostat parameters

(c) Electrostatic parameters (d) Surface parameters

Figure 2.6: Thermostat, barostat, electrostatic and surface pop-up windows

If non-periodic boundaries are to be used, the parameters for surfaces can be entered in the appropriate pop-up

window (Figure 2.6(d)):

1. The type of surface interactions or boundary conditions to be applied.

2. Wall directions: if the checkbox for a particular dimension is ticked, the boundary condition will be

applied to the surfaces orthogonal to the specified axis.

After filling in all the required values, clicking the relevant save button (SAVE T, SAVE B, SAVE E or

SAVE SF) will store the data in preparation for writing to the CONTROL file. The cancel buttons (CANCEL T,

CANCEL B, CANCEL E and CANCEL SF) will close the pop-ups without saving any values.

2.3.2 Defining DPD Interactions

Figure 2.7 shows the Set DPD Interactions panel with the sections for data entry labelled in red numbering.

The following data are required:

1. The number of species is required to specify all interactions between particles in a DPD simulation.

The spinner box allows the user to define up to 10 particle species, while the button set species opens a

pop-up window for the user to enter the properties for each species and write them to a new FIELD file –

see below for more details.

2. After the particles species have been defined, the button set interactions opens a pop-up window to

allow the user to define non-bonded interactions between particle species and write them to the FIELD

file.

3. The operating system is required before launching a command-line terminal and running the molecule

generation utility molecule-generate.cpp to create molecules for the DPD simulation and write them
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Figure 2.7: Set DPD Interactions

to the FIELD file. The utility should be compiled beforehand to give the executable molecule.exe (refer

to Appendix B for more details).

4. It is possible to define an external force field on all particles in the system, using the pull-down box to

define the type. Constant gravitational fields and linear shear boundaries can be defined. Clicking on the

button set parameters opens a pop-up window to define the parameters for the external force field and

write them to the FIELD file.

5. A text editor, including the built-in dlmesoEditor, may be selected using the pull-down box to view

and edit the FIELD file. An alternative editor can be used by selecting ‘other’ and typing its name in the

text box before clicking on the edit FIELD file button.

After the data for particle species, interactions, molecules and external fields are entered and written to the

FIELD file, clicking SAVE will complete the file, which can still be viewed and edited afterwards using the text

editor option described above.

2.3.2.1 Species, interactions and external field parameters

Examples of the pop-up windows for species, non-bonded interactions and external field parameters can be seen

in Figure 2.8 with the rows labelled in red numbering.

The species pop-up window is formatted as in Figure 2.8(a), with individual columns for each species:

1. The name of each species, which can be up to 8 characters long.

2. The mass of a particle for the species (mi).

3. The charge of a particle for the species (qi).

4. The number of unbonded particles of the species (population (unbonded)) in the system.

5. The tickbox indicates whether or not the particles for the species should be frozen.
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(a) Species parameters (b) Non-bonded interaction parameters

(c) External field parameters

Figure 2.8: Species, interactions and external field pop-up windows

6. If a non-periodic hard surface is defined, the wall repulsion parameter (Awall,i) for the species can be

specified.

Figure 2.8(b) gives the layout for the interaction pop-up window:

1. The pair of species can be selected using these pull-down boxes: the interaction parameters and type

currently set for the selected species pair will be displayed.

2. The interaction type for the species pair: the standard DPD model by Groot and Warren[16] is the de-

fault, but many-body (density dependent) DPD[46, 66], Lennard-Jones[30] and Weeks-Chandler-Andersen

‘hard sphere’ models can also be selected. Note that while the Lennard-Jones and Weeks-Chandler-

Andersen (WCA)[69] models are not DPD models, the DPD thermostat can be used with them to maintain

system temperature.

3. The energy parameters for the species pair can be typed into these boxes and set using the button SET I.

Only one energy parameter is required for standard DPD (Aij), Lennard-Jones and WCA (εij), while

many-body DPD can use up to five: the exact number required will depend upon the model selected by

the user. Note that values for these and other interaction parameters for all species pairs will be written to

the FIELD file: if many-body DPD interactions are not included and mixing rules are to be used between

unlike species, the file can subsequently be edited to remove extraneous definitions.

4. The maximum interaction length between the two species (rc,ij or σij) can be typed into this box and

set using the button SET I.

5. The dissipative factor (γij) or collision frequency (Γij) for the species pair (i.e. the parameter for the

selected thermostat) can be typed into this box and set using the SET I button.
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6. If a non-periodic frozen bead surface is defined, the species of beads making up the walls can be selected

using this pull-down box.

7. The wall density of frozen beads can be typed into this box. (This is greyed out if frozen bead walls are

not specified.)

8. The wall thickness of frozen beads can be typed into this box. (This is greyed out if frozen bead walls

are not specified.)

The parameters for external force fields can be given in the pop-up window shown in Figure 2.8(c):

1. The type of external field to be used in the simulation.

2. External field parameters: for constant gravitational fields (or similar constant external force fields), the x-

, y- and z-components of gravitational acceleration (~G) need to be specified. For linear shear boundaries,

the x-, y- and z-components of the boundary velocity (~Vw) need to be defined, although the component

orthogonal to the wall will be ignored in simulations.

After filling in all the required values, clicking the relevant save button (SAVE SP, SAVE I or SAVE E) will

write the data to the FIELD file. The cancel buttons (CANCEL SP, CANCEL I and CANCEL E) will

close the pop-ups without saving any values.

2.4 Compiling and running DL MESO

� Compiling the LBE/DPD code may be accomplished through the compiler panel which is activated from

either of the Compile LBE Code or Compile DPD Code buttons.

� The Compile LBE Code panel allows you to select the operating system, a C++ compiler, compiler

flags and the version (serial or parallel) of the code you wish to build. If you require a C++ compiler

that is not included in the pull-down list, select other and type the command for the required compiler in

the neighbouring box. Clicking the COMPILE button will start the compilation and a message box will

signal its completion.

� The Compile DPD Code panel allows you to select the operating system, a Fortran90 compiler, compiler

flags and the version (serial or parallel) of the code you wish to build. If you require a Fortran90 compiler

that is not included in the pull-down list, select other and type the command for the required compiler in

the neighbouring box. The Create Makefile button needs to be clicked first to create a makefile in the

working directory, which automates compilation and may be edited by the user. Clicking the COMPILE

button will invoke the makefile to compile the code and a message box will signal its completion.

� If the compilation fails, you may need to edit the code. An editing panel is available for this purpose

using either the Change LBE Code or Change DPD code buttons. Its function is similar to the

compilation panel in operation with a choice of text editors, including one packaged with the DL MESO

GUI.

– The files in the LBE code that can be edited include the parallel and serial main files, the lattice

model file, the boundary condition file, the core routines for LBE calculations, the file for user-

defined routines, the main head file and the head file for user-defined routines. Others can be edited

by selecting other and typing the name of the file in the neighbouring box.

– The files in the DPD code that may be edited include the main program, constants, global variables

and the modules configuration, start (for system initialization), field (for force calculations), bond

interactions, many-body DPD, surfaces and statistics. Other code files can be edited by selecting

other and typing the name in the neighbouring box.
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� Running the LBE/DPD code is made possible through the Run LBE Program or Run DPD Program

button, which activates a panel that allows you to select the required submission command and then submit

the job. You may need to create a suitable run script in your working directory beforehand if running the

job in parallel.

� Collecting data from multiple processors and processing it for visualization is possible using the Gather

LBE Data and Process DPD Data buttons. Note that the utilities need to be compiled in the working

directory prior to use: details on this and their functions can be found in Appendix B.

� The results of LBE and DPD calculations may be plotted using the Plot LBE Results and Plot DPD

Results buttons, which allows the user to select plotting and visualization applications, including those

not available in the pull-down lists. Note that these need to be already installed on the workstation in use

before being invoked by the GUI: if they require running from a command-line, tick the run in terminal

box before launching the application.

2.5 Notes

� There are some inactive buttons reserved for later use.

� The GUI does not produce initial state files (lbin.init for LBE, CONFIG for DPD) prior to simulations,

although there are utilities available to do this: see Appendix B for further details.

� Click EXIT to close down the GUI.
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Lattice Boltzmann Equation (LBE)
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Chapter 3

The Lattice Boltzmann Equation: Basic

Theory

3.1 Introduction

The Lattice Boltzmann Equation (LBE) method is based on modelling a fluid consisting of fictional particles,

which collide and move over a discrete lattice grid. This method is similar to its ancestor, Lattice Gas Cellular

Automata (LGCA), but the main difference is that while LGCA represents the existence or otherwise for each

particle at a grid point, LBE describes the physical state of an ensemble of particles by a single distribution

function. This difference allows LBE to simulate both dilute fluids (i.e. those in which the mean free path of

component particles is much larger than the lattice spacing) and condensed matter such as liquids.

The Lattice Boltzmann method uses fully discretized space, time and velocity to describe the evolution of fluid.

Space is represented by a regularly distributed grid, time flow is obtained by integrating over discrete time steps

and discrete velocity vectors (lattice links) are defined to ensure that a particle moves from one grid point to

another without falling between them.

The Lattice Boltzmann algorithm can be summarized by the following:

� Fluid properties are mapped onto a discrete lattice.

� The physical state of the fluid at each lattice point is described by a set of particle distribution functions.

� The system evolves towards an equilibrium (or steady state) by means of a two-step process:

1. Collision (relaxation) of the distribution function towards its local equilibrium form;

2. Propagation of collided distribution functions along lattice links to neighbouring points.

� Macroscopic fluid variables (e.g. density, momenta) can be calculated from moments of the distribution

functions.

Major benefits of the Lattice Boltzmann Equation method include the local nature of its most computationally

intensive process (collision), making the method inherently and massively parallelizable, and its ability to model

complex system geometries and/or fluid interactions with comparatively little additional computational cost.

3.2 Basic Definitions

Triangular and rectangular lattices are two of the most popular grid forms used in Lattice Boltzmann simulations.

Triangular lattices have sixth-order rotation isotropy and have been widely applied in two-dimensional systems,

23
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e.g. the D2Q7 and D2Q13 models. Rectangular lattices have only fourth-order rotation isotropy but can

more easily handle the simulation of three-dimensional systems with complex boundary conditions. The local

equilibria for D2Q9 and D3Q27 lattice models can be derived a priori from the Maxwell equilibrium distribution.

D3Q15 and D3Q19 models appear to be more popular than D3Q27 because the latter is much more expensive

in terms of computing cost.

It is required that the equilibrium state should be able to reproduce elementary macroscopic fluid variables:

ρ =

q∑
i=0

fi (3.1)

ρuα =

q∑
i=0

fieiα (3.2)

where ρ is the density, fi the ith particle distribution function, êi the ith lattice link vector and uα the

macroscopic velocity along the α-axis.

In the Lattice Boltzmann method, the lattice link vectors êi do not represent the thermal velocities of a particle

and therefore

E 6= 1

2

∑
fi (êi − ~u)

2
(3.3)

Equation (3.3) implies that the temperature cannot ordinarily be derived from the lattice particle distribution

function and that the fluid modelled using LBE is generally athermal. It is possible, however, to alleviate this

problem by defining a temperature at each grid point and either using a thermal lattice scheme with additional

link vectors or modelling either the temperature or internal energy on an additional lattice grid.

3.3 Derivation of Equilibrium

There are two methods by which the local equilibria for the Lattice Boltzmann Equation can be constructed.

The bottom-up method obtains the equilibrium from the Maxwell-Boltzmann equilibrium distribution. The

top-down method constructs the equilibrium so that the required macroscopic properties can be reproduced.

Only the bottom-up method is shown here; the top-down method can be found in [6].

The Maxwell-Boltzmann single particle equilibrium distribution function is

feq =
ρ

(2πθ)
D
2

exp

−
(
~ξ − ~u

)2

2θ

 (3.4)

where θ = kBT/m, kB is the Boltzmann constant, T is temperature, m is molar mass, D is the space dimension,
~ξ is the thermal velocity and ~u the macroscopic velocity.

When |~ξ − ~u| �
√
θ, Equation (3.4) can be expanded into

feq =
ρ

(2πθ)
D
2

exp

(
− ξ

2

2θ

)1 +
~ξ · ~u
θ

+

(
~ξ · ~u

)2

2θ2
− u2

2θ

 (3.5)

For a microscopic quantity ψ (ξ), the associated macroscopic quantity Ψ is calculated by

Ψ =

∫
ψ (ξ) feqdξ (3.6)

Let ~ξ =
√

2θ~c, where ~c is a rescaled thermal velocity; the macroscopic velocity ~u can be similarly rescaled to√
2θ~u. Equations (3.5) and (3.6) can thus be combined to give

Ψ =

∫
e−c

2

ψ (c)

√
2θρ

(2πθ)
D
2

[
1 + 2 (~c · ~u) + 2 (~c · ~u)

2 − u2
]
dc (3.7)
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Using Gaussian quadrature, Equation (3.7) changes into

Ψ =
∑
i

ψ (ci)

√
2θρ

(2πθ)
D
2

w (ci)
[
1 + 2 (~c · ~u) + 2 (~c · ~u)

2 − u2
]

(3.8)

Let

wi =

√
2θρ

(2πθ)
D
2

w (ci) (3.9)

and

feqi = wiρ
[
1 + 2 (~c · ~u) + 2 (~c · ~u)

2 − u2
]

(3.10)

The value of w (ci) can be obtained from Gauss-Hermite integration. Equation (3.10) is the equilibrium particle

distribution function in the discrete regime. wi is called the weight factor for speed vector ci. Equation (3.10)

can also be written as

feqi = wiρ

[
1 +

3 (êi · ~u)

c2
+

9 (êi · ~u)
2

2c4
− 3u2

2c2

]
(3.11)

where c =
√

3θ =
√

3kBT
m is the modulus of the basic lattice vector and equivalent to the fluid speed of sound

(e.g. for water at 20�, c = 367.8 m/s).

3.4 Structural Relaxation and Macroscopic Equations

The Lattice Boltzmann method often uses the BGK (Bhatnagar, Gross and Krook) approximation[4] to describe

the structural relaxation. The single particle distribution function evolves to the equilibrium state via

fi (~x+ êi∆t, t+ ∆t)− fi (~x, t) = −∆t

τf
[fi (~x, t)− feqi ] (3.12)

where τf is called the relaxation time and is related to the kinetic viscosity of fluid. This evolution equation

can be divided into two separate processes of collision (where t+ denotes a time after collision has taken place)

fi
(
~x, t+

)
= fi (~x, t)− ∆t

τf
[fi (~x, t)− feqi ] (3.13)

and propagation (or free-streaming)

fi (~x+ êi∆t, t+ ∆t) = fi
(
~x, t+

)
. (3.14)

To derive the macroscopic equations, the left hand side of Equation (3.12) can be expanded as

fi (~x+ êi∆t, t+ ∆t)− fi (~x, t) =

∞∑
m=1

∆tm

m!
(∂t + eiα∂α)

m
fi (~x, t) (3.15)

Expanding the instantaneous particle distribution function around its equilibrium and retaining only the first

order gives

fi (~x, t) = feqi (~x, t)− τf (∂t + eiα∂α) feqi (~x, t) +O
(
∂2
)

(3.16)

Substituting Equations (3.15) and (3.16) into the left hand side of Equation (3.12) gives the second order

differential equation for the equilibrium distribution

feqi − fi
τf

= (∂t + eiα∂α) feqi − wf (∂t + eiα∂α)
2
feqi +O

(
∂3
)

(3.17)

where wf = τf − ∆t
2 .
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Summing Equation (3.17) over i and ignoring the second order deriviative we obtain

0 = ∂tρ+ ∂αρuα − wf∂β

(
∂ρuβ + ∂α

∑
i

feqi eiαeiβ

)
+O

(
∂3
)

(3.18)

Summing Equation (3.18) times ei over i we obtain

0 = ∂tρuα + ∂β
∑
i

feqi eiαeiβ − wf∂γ

(
∂t
∑
i

feqi eiαeiγ + ∂β
∑
i

feqi eiαeiβeiγ

)
+O

(
δ3
)

(3.19)

Equation (3.19) shows that the second term in Equation (3.18) is of the third order in the derivative. Therefore

we have the continuity equation to the second order of the derivative

∂tρ+∇ · ρ~u = 0 (3.20)

Defining the third and fourth order moments∑
i

feqi eiαeiβ = Pαβ + ρuαuβ (3.21)

∑
i

feqi eiαeiβeiγ = Pαβuγ + Pαγuβ + Pβγuα + ρuαuβuγ (3.22)

With these definitions, Equation (3.19) leads to the weakly compressible Navier-Stokes equation

∂t(ρuα) + ∂β(ρuαuβ) = −∂βPαβ +
wfD

3
∂β

(
δαβ − 3∂αPαβ

D
∂γ(ρuγ) + ∂α(ρuβ) + ∂β(ρuα)

)
+O

(
∂3
)

(3.23)

where the kinetic viscosity is given by ν =
wf
3 = 1

3

(
τf − 1

2

)
.

Similarly, the convection diffusion equation governing the evolution of solute transfer and the convection/conduction

equation governing the evolution of thermal transfer can be obtained.

3.5 Mesoscale Interaction

The rate of change of momentum is proportional to the force

ρuα (t+ ∆t) = ρuα (t) + Fα∆t (3.24)

The Lattice Boltzmann Equation takes into account the effect of relaxation and it is possible to express Equation

(3.24) in a new format[41]:

ρuα (t+ ∆t) = ρuα (t) + Fατf (3.25)

~F , with Fα as the component in the α direction, can be a long-ranged body force or any local interactions.

In the Shan-Chen pseudopotential model for multiple phases and components[55], the force on component a is

defined as
~F a = −ψa (~x)

∑
b

gab
∑
i

wiψ
b (~x+ êi) êi (3.26)

where gab is the interaction coefficient between elements a and b. ψa is related to the density of element a and

can take many different forms, e.g.

ψa (~x) = ρa0

[
1− exp

(
−ρ

a

ρa0

)]
(3.27)

In the Lishchuk continuum-based model for single phases and multiple components[35], the force acting between

components a and b is expressed as

~Fab =
1

2
gabKab∇ρNab (3.28)
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where ρNab = ρa−ρb
ρa+ρb

is a phase index between the two components and Kab is the local curvature from the

interface model, which can be determined from spatial gradients of the phase index. This algorithm requires

a modification to the collision step: at each lattice point all fluids are collided as a single fluid, which is then

segregated back out into the individual fluids.

3.6 Summary of Lattice Boltzmann Equation

Lattice Boltzmann is an established numerical methodology for handling hydrodynamics in fluid. It is particu-

larly suited to simulating systems with complex boundary conditions and is also suitable for systems with phase

transitions since mesoscale interactions can be merged into the method easily.





Chapter 4

DL MESO LBE Basic Definition

4.1 Lattice models

DL MESO LBE utilizes a right-handed Cartesian coordinate system with the x-axis from left to right in the

horizontal direction, the y-axis from low to high in the vertical direction and z-axis from back to front.

D2Q9, D3Q15, D3Q19 and D3Q27 lattice models have been included. The speed vectors and weight factors are

arranged to allow the use of swap algorithms for propagation[43]. The transformation matrices T for Multiple-

Relaxation-Time (MRT) schemes are included for each lattice (except D3Q27), along with the equilibrium

moments ( ~Meq) expressed for the incompressible case (for the compressible case, ρ0 is substituted with ρ),

collision operators (~s), definition of bulk viscosity (ν′) and forcing source-terms (~S).

D2Q9

Weight factor
i wi
0 4

9

2,4,6,8 1
9

1,3,5,7 1
36

Speed vector
i ei,x ei,y
0 0 0
1 -1 1
2 -1 0
3 -1 -1
4 0 -1
5 1 -1
6 1 0
7 1 1
8 0 1

29
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T =



1 1 1 1 1 1 1 1 1

−4 2 −1 2 −1 2 −1 2 −1

4 1 −2 1 −2 1 −2 1 −2

0 −1 −1 −1 0 1 1 1 0

0 −1 2 −1 0 1 −2 1 0

0 1 0 −1 −1 −1 0 1 1

0 1 0 −1 2 −1 0 1 −2

0 0 1 0 −1 0 1 0 −1

0 −1 0 1 0 −1 0 1 0



~Meq =



ρ

eeq

εeq

jx

qeqx
jy

qeqy
peqxx
peqxy


=



ρ

−2ρ+ 3
ρ0

(
j2
x + j2

y

)
wερ+

wεj
ρ0

(j2
x + j2

y)

jx

−jx
jy

−jy
j2x−j

2
y

3ρ0
jxjy
3ρ0



~S =



0

6(vxFx + vyFy)

−6(vxFx + vyFy)

Fx

−Fx
Fy

−Fy
2(vxFx − vyFy)

vxFy + vyFx


.

~s =
(

1, τ−1
f,bulk, s2, 1, s4, 1, s4, τ

−1
f , τ−1

f

)T
ν′ =

1

6

(
τf,bulk −

1

2

)
(∆x)

2

∆t
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D3Q15

Weight factor
i wi
0 2

9

1–3, 8–10 1
9

4–7, 11–14 1
72

Speed vector
i ei,x ei,y ei,z
0 0 0 0
1 -1 0 0
2 0 -1 0
3 0 0 -1
4 -1 -1 -1
5 -1 -1 1
6 -1 1 -1
7 -1 1 1
8 1 0 0
9 0 1 0

10 0 0 1
11 1 1 1
12 1 1 -1
13 1 -1 1
14 1 -1 -1

T =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−2 −1 −1 −1 1 1 1 1 −1 −1 −1 1 1 1 1

16 −4 −4 −4 1 1 1 1 −4 −4 −4 1 1 1 1

0 −1 0 0 −1 −1 −1 −1 1 0 0 1 1 1 1

0 4 0 0 −1 −1 −1 −1 −4 0 0 1 1 1 1

0 0 −1 0 −1 −1 1 1 0 1 0 1 1 −1 −1

0 0 4 0 −1 −1 1 1 0 −4 0 1 1 −1 −1

0 0 0 −1 −1 1 −1 1 0 0 1 1 −1 1 −1

0 0 0 4 −1 1 −1 1 0 0 −4 1 −1 1 −1

0 2 −1 −1 0 0 0 0 2 −1 −1 0 0 0 0

0 0 1 −1 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1 0 0 0 1 1 −1 −1

0 0 0 0 1 −1 −1 1 0 0 0 1 −1 −1 1

0 0 0 0 1 −1 1 −1 0 0 0 1 −1 1 −1

0 0 0 0 −1 1 1 −1 0 0 0 1 −1 −1 1


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~Meq =



ρ

eeq

εeq

jx

qeqx
jy

qeqy
jz

qeqz
3peqxx
peqww
peqxy
peqyz
peqzx
meq
xyz



=



ρ

−2ρ+
(j2x+j2y+j2z)

ρ0

wερ+
wεj
ρ0

(j2
x + j2

y + j2
z )

jx

− 7
3jx

jy

− 7
3jy

jz

− 7
3jz

2j2x−j
2
y−j

2
z

ρ0
j2y−j

2
z

ρ0
jxjy
ρ0
jyjz
ρ0
jzjx
ρ0

0



~S =



0

2(vxFx + vyFy + vzFz)

−10(vxFx + vyFy + vzFz)

Fx

− 7
3Fx

Fy

− 7
3Fy

Fz

− 7
3Fz

2(2vxFx − vyFy − vzFz)
2(vyFy − vzFz)
vxFy + vyFx

vyFz + vzFy

vzFx + vxFz

0



.

~s =
(

1, τ−1
f,bulk, s2, 1, s4, 1, s4, 1, s4, τ

−1
f , τ−1

f , τ−1
f , τ−1

f , τ−1
f , s14

)T
ν′ =

2

9

(
τf,bulk −

1

2

)
(∆x)

2

∆t



4.1. LATTICE MODELS 33

D3Q19

Weight factor
i wi
0 1

3

1–3, 10–12 1
18

4–9, 13–18 1
36

Speed vector
i ei,x ei,y ei,z
0 0 0 0
1 -1 0 0
2 0 -1 0
3 0 0 -1
4 -1 -1 0
5 -1 1 0
6 -1 0 -1
7 -1 0 1
8 0 -1 -1
9 0 -1 1

10 1 0 0
11 0 1 0
12 0 0 1
13 1 1 0
14 1 -1 0
15 1 0 1
16 1 0 -1
17 0 1 1
18 0 1 -1

T =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−30 −11 −11 −11 8 8 8 8 8 8 −11 −11 −11 8 8 8 8 8 8

12 −4 −4 −4 1 1 1 1 1 1 −4 −4 −4 1 1 1 1 1 1

0 −1 0 0 −1 −1 −1 −1 0 0 1 0 0 1 1 1 1 0 0

0 4 0 0 −1 −1 −1 −1 0 0 −4 0 0 1 1 1 1 0 0

0 0 −1 0 −1 1 0 0 −1 −1 0 1 0 1 −1 0 0 1 1

0 0 4 0 −1 1 0 0 −1 −1 0 −4 0 1 −1 0 0 1 1

0 0 0 −1 0 0 −1 1 −1 1 0 0 1 0 0 1 −1 1 −1

0 0 0 4 0 0 −1 1 −1 1 0 0 −4 0 0 1 −1 1 −1

0 2 −1 −1 1 1 1 1 −2 −2 2 −1 −1 1 1 1 1 −2 −2

0 −4 2 2 1 1 1 1 −2 −2 −4 2 2 1 1 1 1 −2 −2

0 0 1 −1 1 1 −1 −1 0 0 0 1 −1 1 1 −1 −1 0 0

0 0 −2 2 1 1 −1 −1 0 0 0 −2 2 1 1 −1 −1 0 0

0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 −1 −1 1 1 0 0 0 0 0 1 1 −1 −1 0 0

0 0 0 0 1 −1 0 0 −1 −1 0 0 0 −1 1 0 0 1 1

0 0 0 0 0 0 −1 1 1 −1 0 0 0 0 0 1 −1 −1 1


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~Meq =



ρ

eeq

εeq

jx

qeqx
jy

qeqy
jz

qeqz
3peqxx
3πeqxx
peqww
πeqww
peqxy
peqyz
peqzx
meq
x

meq
y

meq
z



=



ρ

−11ρ+ 19
ρ0

(
j2
x + j2

y + j2
z

)
wερ+

wεj
ρ0

(j2
x + j2

y + j2
z )

jx

− 2
3jx

jy

− 2
3jy

jz

− 2
3jz

2j2x−j
2
y−j

2
z

ρ0
wxx
ρ0

(
2j2
x − j2

y − j2
z

)
j2y−j

2
z

ρ0
wxx
ρ0

(
j2
y − j2

z

)
jxjy
ρ0
jyjz
ρ0
jzjx
ρ0

0

0

0



~S =



0

38(vxFx + vyFy + vzFz)

−11(vxFx + vyFy + vzFz)

Fx

− 2
3Fx

Fy

− 2
3Fy

Fz

− 2
3Fz

2(2vxFx − vyFy − vzFz)
−(2vxFx − vyFy − vzFz)

2(vyFy − vzFz)
−(vyFy − vzFz)
vxFy + vyFx

vyFz + vzFy

vzFx + vxFz

0

0

0



.

~s =
(

1, τ−1
f,bulk, s2, 1, s4, 1, s4, 1, s4, τ

−1
f , s4, τ

−1
f , s4, τ

−1
f , τ−1

f , τ−1
f , s16, s16, s16

)T
ν′ =

2

9

(
τf,bulk −

1

2

)
(∆x)

2

∆t
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D3Q27

Weight factor
i wi
0 8

27

1–3, 14–16 2
27

4–9, 17–22 1
54

10–13, 23–26 1
216

Speed vector
i ei,x ei,y ei,z
0 0 0 0
1 -1 0 0
2 0 -1 0
3 0 0 -1
4 -1 -1 0
5 -1 1 0
6 -1 0 -1
7 -1 0 1
8 0 -1 -1
9 0 -1 1

10 -1 -1 -1
11 -1 -1 1
12 -1 1 -1
13 -1 1 1
14 1 0 0
15 0 1 0
16 0 0 1
17 1 1 0
18 1 -1 0
19 1 0 1
20 1 0 -1
21 0 1 1
22 0 1 -1
23 1 1 1
24 1 1 -1
25 1 -1 1
26 1 -1 -1
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Table 4.1: Boundary condition category

value meaning
0 liquid
10 domain boundary
11 inside solid
12 on-grid bounce-back boundary
13 mid-link bounce-back boundary
100–199 constant speed, composition and temperature boundary
200–299 constant speed, Neumann composition and temperature boundary
300–399 constant speed and composition, Neumann temperature boundary
400–499 constant speed and temperature, Neumann composition boundary
500–599 constant pressure, composition and temperature boundary
600–699 constant pressure, Neumann composition and temperature boundary
700–799 constant pressure and composition, Neumann temperature boundary
800–899 constant pressure and temperature, Neumann composition boundary

4.2 Data structure

4.2.1 Storage of particle distribution functions

For a system with a square lattice, the total number of grid points = lbsy.nx × lbsy.ny × lbsy.nz, where

lbsy.nx, lbsy.ny and lbsy.nz are the numbers of grid points along the x-, y- and z-axes respectively. The

grid points are arranged in a serial order of

g000, g001, . . . g00 lbsy.nz, g010, g011, . . . g0 lbsy.ny lbsy.nz, g100, g101, . . . glbsy.nx lbsy.ny lbsy.nz

At each grid point, DL MESO LBE arranges the particle distribution functions in order of: fluid functions,

solute functions, temperature functions and phase field order parameter. For example, for a D2Q9 lattice with

two fluids, scalar temperature and phase field, the distribution functions are in the order of

f0
0 , f

0
1 , f

0
2 , f

0
3 , f

0
4 , f

0
5 , f

0
6 , f

0
7 , f

0
8 , f

1
0 , f

1
1 , f

1
2 , f

1
3 , f

1
4 , f

1
5 , f

1
6 , f

1
7 , f

1
8 , T0, T1, T2, T3, T4, T5, T6, T7, T8, pf

Therefore the number of particle distribution functions at each grid point is

lbsitelength = (lbsy.nf + lbsy.nc + lbsy.nt)× lbsy.nq + lbsy.ph

where lbsy.nf, lbsy.nc, lbsy.nt, lbsy.nq and lbsy.ph are respectively: number of fluids, number of solutes,

number of temperature scalars, number of discrete speeds and number of the phase field order parameters.

lbsy.nt and lbsy.ph can only take the values of 1 or 0, representing systems with or without temperature

scalar and phase field. Also if lbsy.nc 6= 0, lbsy.nf cannot be set larger than 1.

4.2.2 Storage of space properties

The space property is represented by an integer value in DL MESO LBE. For example, lbphi[100] = 0 represents

the 100th grid point as a liquid site and lbphi[101] = 12 shows the 101st grid point as an on-grid bounce-back

boundary. Table 4.1 lists the categories of space properties.

The orientation of a solid-liquid boundary is also represented by the value of an integer. For example, a planar

surface with normal vector along the y-axis is denoted by 21, while a concave corner face at the top-right-front

corner is denoted by 31. It must be pointed out that only those space positions located in the surface of a

face-centered cube have been included and translated in DL MESO LBE. Points with random orientations, e.g.

47◦ plane, have not been included.

The boundary condition number can be rather confusing and difficult to understand. The GUI in DL MESO

therefore includes a translator which interprets a word as its corresponding integer number. The word is made
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Table 4.2: Boundary condition category

letter meaning
V Constant Velocity
P Constant Pressure (Density)
C Constant Solute Composition
T Constant Temperature
B Neumann Boundary Condition (Solute Composition or Temperature)
PS Planar Surface
CC Concave Corner
CE Concave Edge
T Normal Vector Pointing to Top
D Normal Vector Pointing Downwards
L Normal Vector Pointing to Left
R Normal Vector Pointing to Right
F Normal Vector Pointing to Front
B Normal Vector Pointing to Back

up of defined letters as listed in Table 4.2. The boundary conditions with combinations of type and orientation

are listed in Table 4.3. The letters are in the order of:

1. Fluid property: constant speed or constant pressure.

2. Solute property: constant composition or Neumann boundary.

3. Temperature property: isothermal (constant) or heat bath (Neumann boundary).

4. Geometric property: planar surface, concave corner or concave edge.

5. Boundary orientation: one letter for planar surface, two letters for concave corners or three letters for

concave edges.

For example, a shearing planar surface facing down the y-axis with constant composition and temperature (i.e.

isothermal) is represented as VCBPSD and translated as 322.
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Table 4.3: Notation of boundary condition

VCTPST 121 VCTPSD 122 VCTPSL 123

VCTPSR 124 VCTPSF 125 VCTPSB 126

VCTCCTRB 127 VCTCCTLB 128 VCTCCDLB 129

VCTCCDRB 130 VCTCCTRF 131 VCTCCTLF 132

VCTCCDLF 133 VCTCCDRF 134 VCTCETR 143

VCTCETL 144 VCTCEDL 145 VCTCEDR 146

VCTCETF 147 VCTCELF 148 VCTCEDF 149

VCTCERF 150 VCTCETB 151 VCTCELB 152

VCTCEDB 153 VCTCERB 154 VBBPST 221

VBBPSD 222 VBBPSL 223 VBBPSR 224

VBBPSF 225 VBBPSB 226 VBBCCTRB 227

VBBCCTLB 228 VBBCCDLB 229 VBBCCDRB 230

VBBCCTRF 231 VBBCCTLF 232 VBBCCDLF 233

VBBCCDRF 234 VBBCETR 243 VBBCETL 244

VBBCEDL 245 VBBCEDR 246 VBBCETF 247

VBBCELF 248 VBBCEDF 249 VBBCERF 250

VBBCETB 251 VBBCELB 252 VBBCEDB 253

VBBCERB 254 VCBPST 321 VCBPSD 322

VCBPSL 323 VCBPSR 324 VCBPSF 325

VCBPSB 326 VCBCCTRB 327 VCBCCTLB 328

VCBCCDLB 329 VCBCCDRB 330 VCBCCTRF 331

VCBCCTLF 332 VCBCCDLF 333 VCBCCDRF 334

VCBCETR 343 VCBCETL 344 VCBCEDL 345

VCBCEDR 346 VCBCETF 347 VCBCELF 348

VCBCEDF 349 VCBCERF 350 VCBCETB 351

VCBCELB 352 VCBCEDB 353 VCBCERB 354

VBTPST 421 VBTPSD 422 VBTPSL 423

VBTPSR 424 VBTPSF 425 VBTPSB 426

VBTCCTRB 427 VBTCCTLB 428 VBTCCDLB 429

VBTCCDRB 430 VBTCCTRF 431 VBTCCTLF 432

VBTCCDLF 433 VBTCCDRF 434 VBTCETR 443

VBTCETL 444 VBTCEDL 445 VBTCEDR 446

VBTCETF 447 VBTCELF 448 VBTCEDF 449

VBTCERF 450 VBTCETB 451 VBTCELB 452

VBTCEDB 453 VBTCERB 454 PCTPST 521

PCTPSD 522 PCTPSL 523 PCTPSR 524

PCTPSF 525 PCTPSB 526 PCTCCTRB 527

PCTCCTLB 528 PCTCCDLB 529 PCTCCDRB 530

PCTCCTRF 531 PCTCCTLF 532 PCTCCDLF 533

PCTCCDRF 534 PCTCETR 543 PCTCETL 544

PCTCEDL 545 PCTCEDR 546 PCTCETF 547

PCTCELF 548 PCTCEDF 549 PCTCERF 550

PCTCETB 551 PCTCELB 552 PCTCEDB 553

PCTCERB 554 PBTPST 621 PBTPSD 622

PBTPSL 623 PBTPSR 624 PBTPSF 625

PBTPSB 626 PBTCCTRB 627 PBTCCTLB 628

PBTCCDLB 629 PBTCCDRB 630 PBTCCTRF 631

PBTCCTLF 632 PBTCCDLF 633 PBTCCDRF 634
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Table 4.3: Notation of boundary condition (continued)

PBTCETR 643 PBTCETL 644 PBTCEDL 645

PBTCEDR 646 PBTCETF 647 PBTCELF 648

PBTCEDF 649 PBTCERF 650 PBTCETB 651

PBTCELB 652 PBTCEDB 653 PBTCERB 654

PCBPST 721 PCBPSD 722 PCBPSL 723

PCBPSR 724 PCBPSF 725 PCBPSB 726

PCBCCTRB 727 PCBCCTLB 728 PCBCCDLB 729

PCBCCDRB 730 PCBCCTRF 731 PCBCCTLF 732

PCBCCDLF 733 PCBCCDRF 734 PCBCETR 743

PCBCETL 744 PCBCEDL 745 PCBCEDR 746

PCBCETF 747 PCBCELF 748 PCBCEDF 749

PCBCERF 750 PCBCETB 751 PCBCELB 752

PCBCEDB 753 PCBCERB 754 PBBPST 821

PBBPSD 822 PBBPSL 823 PBBPSR 824

PBBPSF 825 PBBPSB 826 PBBCCTRB 827

PBBCCTLB 828 PBBCCDLB 829 PBBCCDRB 830

PBBCCTRF 831 PBBCCTLF 832 PBBCCDLF 833

PBBCCDRF 834 PBBCETR 843 PBBCETL 844

PBBCEDL 845 PBBCEDR 846 PBBCETF 847

PBBCELF 848 PBBCEDF 849 PBBCERF 850

PBBCETB 851 PBBCELB 852 PBBCEDB 853

PPBCERB 854

4.2.3 Storage of running information

The Lattice Boltzmann component of DL MESO defines three structures to store the system1 information. The

parameters in these structures are listed in Tables 4.4, 4.5, 4.6 and 4.7.

Table 4.4: System information

parameter meaning
lbsy.nd space dimension
lbsy.nq number of discrete speeds
lbsy.nf number of fluids
lbsy.nc number of solutes
lbsy.nt number of temperature scalars (0 or 1)
lbsy.pf phase field order parameter
lbsy.nx number of grid points in x direction
lbsy.ny number of grid points in y direction
lbsy.nz number of grid points in z direction (lbsy.nz ≡ 1 when lbsy.nd = 2)

4.3 The Parameters and Their Functions

Table 4.8 lists all the parameters defined in DL MESO LBE. The whole range parameters are named with the

prefix lb. Because DL MESO is an ongoing project and new parameters might be added to the package in the

future, it is strongly suggested that users of DL MESO would not name their own parameters with prefixes lb,

dp or sp.

1Referring to the physical system being simulated rather than the computer system.
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Table 4.5: Domain information

parameter meaning
lbdm.rank name of the processor
lbdm.size number of processors
lbdm.bwid domain boundary width (set to zero for serial running)
lbdm.xcor x-coordinate of the processor
lbdm.ycor y-coordinate of the processor
lbdm.zcor z-coordinate of the processor (lbdm.zcor ≡ 0 when lbsy.nd = 2)
lbdm.xdim number of processors along x-axis
lbdm.ydim number of processors along y-axis
lbdm.zdim number of processors along z-axis (lbdm.zdim ≡ 1 when lbsy.nd = 2)
lbdm.xs x-coordinate of domain start position
lbdm.xe x-coordinate of domain end position
lbdm.xinner number of grid points along x-axis in the domain
lbdm.xouter number of grid points along x-axis in the domain including the boundary
lbdm.ys y-coordinate of domain start position
lbdm.ye y-coordinate of domain end position
lbdm.yinner number of grid points along y-axis in the domain
lbdm.youter number of grid points along y-axis in the domain including the boundary
lbdm.zs z-coordinate of domain start position
lbdm.ze z-coordinate of domain end position
lbdm.zinner number of grid points along z-axis in the domain
lbdm.zouter number of grid points along z-axis in the domain including the boundary
lbdm.touter total number of grid points in the domain including the boundary

Table 4.6: Neighbour information

parameter meaning
lbnb[k].rank processor name of neighbour k
lbnb[k].spos start position for sending distribution function message
lbnb[k].rpos start position for receiving distribution function message
lbnb[k].bspos start position for sending boundary condition message
lbnb[k].brpos start position for receiving boundary condition message
k = 0 right neighbour
k = 1 left neighbour
k = 2 upper neighbour
k = 3 lower neighbour
k = 4 front neighbour
k = 5 back neighbour

Table 4.7: Simulation information

parameter meaning possible values
collide collision and forcing type 0 = BGK, 1 = BGK with Guo forcing,

2 = MRT, 3 = MRT with Guo-like forcing
interact mesophase interaction type 0 = none, 1 = Shan/Chen, 2 = Shan/Chen with wetting,

3 = Lishchuk
incompress incompressibility of fluids 0 = compressible fluids, 1 = incompressible fluids
outtype output file type 0 = VTK, 1 = Legacy VTK, 2 = Plot3D

The notation column in Table 4.8 gives the restrictions applicable on the parameters. ‘A’ indicates an array

of data, followed by the number of elements in the array. For example, ‘A lbsy.nf’ means the parameter is

actually an array with lbsy.nf elements. ‘≥ 1’ means the number must be greater or equal to one, while ‘1

or 0’ means the value of the parameter can either be one or zero. An asterisk in the data type for the array

indicates that it is allocatable.



4.3. THE PARAMETERS AND THEIR FUNCTIONS 41

Table 4.8: DL MESO LBE Parameters

function parameter data type notation

system information lbsy structure

domain information lbdm structure

neighbour information lbnb structure A 6

space dimension lbsy.nd int

number of discrete speeds lbsy.nq int

number of fluids lbsy.nf int ≥ 1

number of solutes lbsy.nc int

temperature scalars lbsy.nt int 1 or 0

phase field order parameter lbsy.pf int 1 or 0

grid points in x-direction lbsy.nx int

grid points in y-direction lbsy.ny int

grid points in z-direction lbsy.nz int

domain boundary width lbsy.bwid int ≥ 1

system dimension along x lbxsize double

total calculation steps lbtotstep int

equilibration calculation steps lbequstep int

data save interval lbsave int

current calculation step lbcurstep int

steering lbsteer int 1 or 0

noise intensity lbnoise double

evaporation limit lbevaplim double

initial system velocity lbiniv double A 3

top boundary velocity lbtopv double A 3

bottom boundary velocity lbbotv double A 3

front boundary velocity lbfrov double A 3

back boundary velocity lbbakv double A 3

left boundary velocity lblefv double A 3

right boundary velocity lbrigv double A 3

constant incompressible fluid density (ρ0) lbincp double* A lbsy.nf

initial fluid density lbinip double* A lbsy.nf

top boundary fluid density lbtopp double* A lbsy.nf

bottom boundary fluid density lbbotp double* A lbsy.nf

front boundary fluid density lbfrop double* A lbsy.nf

back boundary fluid density lbbakp double* A lbsy.nf

left boundary fluid density lblefp double* A lbsy.nf

right boundary fluid density lbrigp double* A lbsy.nf

initial composition lbinic double* A lbsy.nc

top boundary composition lbtopc double* A lbsy.nc

bottom boundary composition lbbotc double* A lbsy.nc

front boundary composition lbfroc double* A lbsy.nc

back boundary composition lbbakc double* A lbsy.nc

left boundary composition lblefc double* A lbsy.nc

right boundary composition lbrigc double* A lbsy.nc

initial temperature lbinit double

top boundary temperature lbtopt double

bottom boundary temperature lbbott double

front boundary temperature lbfrot double

back boundary temperature lbbakt double

left boundary temperature lbleft double

right boundary temperature lbrigt double

system heating rate lbsysdt double

top boundary heating rate lbtopdt double
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Table 4.8: DL MESO LBE Parameters (continued)

function parameter data type notation

bottom boundary heating rate lbbotdt double

front boundary heating rate lbfrodt double

back boundary heating rate lbbakdt double

left boundary heating rate lblefdt double

right boundary heating rate lbrigdt double

Boussinesq high temperature lbbousth double

Boussinesq low temperature lbboustl double

fluid inverse relaxation time (τ−1
f ) lbtf double* A lbsy.nf

bulk fluid inverse relaxation time (τ−1
f,bulk) lbtfbulk double* A lbsy.nf

solute inverse relaxation time (τ−1
c ) lbtc double* A lbsy.nc

temperature inverse relaxation time (τ−1
t ) lbtt double* A lbsy.nt

fluid-fluid interaction parameter (gab) lbg double* A lbsy.nf*lbsy.nf

fluid-wall interaction parameter (ga,wall) lbgwall double* A lbsy.nf

fluid segregation parameter (βab) lbseg double* A lbsy.nf*lbsy.nf

body force lbbdforce double* A 3*lbsy.nf

Boussinesq force (~gβ) lbbousforce double* A 3*lbsy.nf

interaction force lbinterforce double* A 3*lbsy.nf*lbdm.touter

distribution function lbf double* A lbsitelength*lbdm.touter

temporary function lbft double* A lbdm.touter*(lbsy.nf+lbsy.nc)

equilibrium distribution lbfeq double* A lbsy.nq

space property lbphi int* A lbdm.touter

neighbouring point property lbneigh int* A 6*lbdm.touter

speed vector for the model lbv int* A 3*lbsy.nq

index for opposing speed lbopv int* A lbsy.nq

weight factor of speed vector lbw double* A lbsy.nq

MRT transformation matrix lbtr double* A lbsy.nq*lbsy.nq

MRT inverse transformation matrix lbtrinv double* A lbsy.nq*lbsy.nq

MRT tuneable collision parameters lbmrts double A 3

MRT tuneable equilibrium parameters lbmrtw double A 3

number of parameters per grid point lbsitelength int

number of grid points in yz plane lbyz int

grid spacing lbdx double

time step lbdt double

speed of sound lbsoundv double

Reynolds number lbreynolds double

processor name lbdm.rank int

total number of processors lbdm.size int

x-coordinate for domain lbdm.xcor int

y-coordinate for domain lbdm.ycor int

z-coordinate for domain lbdm.zcor int

number of processors along x-axis lbdm.xdim int

number of processors along y-axis lbdm.ydim int

number of processors along z-axis lbdm.zdim int

x-coordinate of domain start position lbdm.xs int

x-coordinate of domain end position lbdm.xe int

y-coordinate of domain start position lbdm.ys int

y-coordinate of domain end position lbdm.ye int

z-coordinate of domain start position lbdm.zs int

z-coordinate of domain end position lbdm.ze int

inner2 grid points along x lbdm.xinner int

2Excluding boundary points
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Table 4.8: DL MESO LBE Parameters (continued)

function parameter data type notation

outer3 grid points along x lbdm.xouter int

inner grid points along y lbdm.yinner int

outer grid points along y lbdm.youter int

inner grid points along z lbdm.zinner int

outer grid points along z lbdm.zouter int

total grid points lbdm.touter int

name of neighbouring processor lbnb[].rank int

position for sending distribution message lbnb[].spos unsigned long

position for receiving distribution message lbnb[].rpos unsigned long

position for sending boundary message lbnb[].bspos unsigned long

position for receiving boundary message lbnb[].brpos unsigned long

position for sending force message lbnb[].fspos unsigned long

position for receiving force message lbnb[].frpos unsigned long

position for sending phase index message lbnb[].ispos unsigned long

position for receiving phase index message lbnb[].irpos unsigned long

message type lbmsg2x MPI Datatype

message type lbmsg2y MPI Datatype

message type lbmsg3x MPI Datatype

message type lbmsg3y MPI Datatype

message type lbmsg3z MPI Datatype

message type lbbmsg2x MPI Datatype

message type lbbmsg2y MPI Datatype

message type lbbmsg3x MPI Datatype

message type lbbmsg3y MPI Datatype

message type lbbmsg3z MPI Datatype

message type lbfmsg2x MPI Datatype

message type lbfmsg2y MPI Datatype

message type lbfmsg3x MPI Datatype

message type lbfmsg3y MPI Datatype

message type lbfmsg3z MPI Datatype

message type lbimsg2x MPI Datatype

message type lbimsg2y MPI Datatype

message type lbimsg3x MPI Datatype

message type lbimsg3y MPI Datatype

message type lbimsg3z MPI Datatype

endianness of system bigend int

total calculation time totaltime double

output file number qVersion int

collision type parameter collide int

interaction type parameter interact int

incompressible fluid parameter incompress int 1 or 0

output file type outformat int

3Including boundary points
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DL MESO LBE Features

5.1 Collision and Propagation Algorithms

The collision and propagation routines are a fundamental part of Lattice Boltzmann Equation calculations.

Implementation involves the calculation of post-collisional values for the distribution functions at each lattice

point (at time t+). For the generalized form of the Lattice Boltzmann Equation with the collision operator Ci

(normally in the form of a matrix):

fi
(
~x, t+

)
= fi (~x, t) + Ci

and movement of these distribution functions to neighbouring lattice nodes:

fi (~x+ êi∆t, t+ ∆t) = fi
(
~x, t+

)
which combine to give the governing equation for calculations.

5.1.1 Collision algorithms

The forms of collision currently available in DL MESO LBE are the Bhatnagar-Gross-Krook (BGK) single

relaxation time[4] and Multiple Relaxation Time (MRT) schemes.

5.1.1.1 BGK single relaxation time

The BGK collision operator is defined by

Ci = −∆t

τf
(fi (~x, t)− feqi ) (5.1)

where τf is the relaxation time, related to the kinetic (shear) viscosity of fluid by

ν =
1

3

(
τf −

1

2

)
(∆x)

2

∆t

with the kinematic bulk viscosity of the fluid, ν′, set equal to 2
3ν[7]. This reduces the equation for post-collisional

distribution functions to

fi
(
~x, t+

)
= fi (~x, t)− ∆t

τf
(fi (~x, t)− feqi ) ,

the same as Equation 3.12.

Interfacial and external forces are dealt with either by adding
τf ~F
ρ to the velocity of the fluid[41] when calculating

the equilibrium distribution function feqi , or by adding a forcing term to the collisional distribution function[19]:

Fi =

(
1− 1

2τf

)
wi

[
êi − ~v
c2s

+
(êi · ~v)

c4s
êi

]
· ~F (5.2)

45



46 CHAPTER 5. DL MESO LBE FEATURES

where ~v is defined as equal to ~u+ ∆t
2ρ
~F and used in both the expression above and as the velocity for calculating

equilibrium distribution functions. The former is used by default in fCollisionBGK, while the latter method

by Guo et al. can be invoked using fCollisionBGKGuo.

5.1.1.2 Multiple Relaxation Time (MRT)

The MRT collision operator operates on a similar principle to the quasilinear Lattice Boltzmann Equation[25],

which expresses collisions in terms of a square matrix with dimensions equal to the number of lattice links per

grid point (m ≡ lbsy.nq). Unlike quasilinear LBE, however, MRT collision schemes are applied to the moments

for each lattice point rather than the distribution functions[33, 8], which are related to each other by

~M = T~f (5.3)

where ~f is a vector of all m distribution functions for the point, i.e. (f0, f1 . . . fm−1)
T

, ~M the vector of

moments (also of size m and dependent on the lattice system) and T the transformation matrix that renders

the moments in terms of the distribution functions. Equilibrium values for the moments, ~Meq, can be determined

by transforming the standard local equilibrium distribution function into moment space by

~Meq = T~feq (5.4)

where ~feq is the vector of local equilibrium distribution functions: the resulting equilibrium moments can

alternatively be expressed directly as functions of fluid density and velocity. Certain moments, such as density

and momentum, must be conserved and their equilibrium values are set so that no changes are made. The

post-collisional moments are determined by relaxation of the non-equilibrium part, i.e.

~M(~x, t+) = ~M(~x, t)−Λ( ~M(~x, t)− ~Meq(~x, t)) (5.5)

where Λ is the collision matrix, which takes the form of a diagonal matrix of m collision parameters (represented

by ~s):

Λ = diag(~s) (5.6)

Some of the collision parameters can be specified by the user to set both kinematic and bulk viscosities, a few

others can be tuned to improve simulation stability and the remainder (i.e. those for density and momentum)

are fixed to conserve macroscopic hydrodynamics. If all values of si are set to 1
τf

, the scheme reduces to BGK

single relaxation time collisions. Since the collisional matrix is diagonal, equation 5.5 can be rewritten in terms

of each moment, i.e.

Mi(~x, t
+) = Mi(~x, t)− si (Mi(~x, t)−Meq

i (~x, t)) (5.7)

Multiplying ~M(~x, t+) by the inverse of the transformation matrix, T−1, gives the post-collisional distribution

functions.

Interfacial and external forces can be applied either by the addition of τf ~F to the fluid momentum[41] or by

the use of a moment-transformed source term, ~S, whose terms are defined by[49]:

Si = wi

[
êi − ~v
c2s

+
(êi · ~v)

c4s
êi

]
· ~F (5.8)

and applied by the following to correct the post-collisional moments:

∆ ~M =
(
I− 1

2Λ
)
~S∆t (5.9)

where I as an identity matrix. The above equation can be re-expressed as

∆Mi =
(
1− 1

2si
)
Si∆t (5.10)

The above equations after inverse transformation reduce to equation 5.2 when the collision parameters are set

to 1
τf

. All collision parameters for conserved moments should be set to unity when applying external forces.
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An example can be given for the D2Q9 lattice system[33]; the moment vector is

~M = (ρ, e, ε, jx, qx, jy, qy, pxx, pxy)
T

with ρ as the density, e the energy, ε the square of energy, ~j momentum, ~q energy flux, pxx the diagonal stress

tensor component and pxy the off-diagonal stress tensor component. The transformation matrix is

T =



1 1 1 1 1 1 1 1 1

−4 2 −1 2 −1 2 −1 2 −1

4 1 −2 1 −2 1 −2 1 −2

0 −1 −1 −1 0 1 1 1 0

0 −1 2 −1 0 1 −2 1 0

0 1 0 −1 −1 −1 0 1 1

0 1 0 −1 2 −1 0 1 −2

0 0 1 0 −1 0 1 0 −1

0 −1 0 1 0 −1 0 1 0


The equilibrium moment vector is

~Meq =

(
ρ,−2ρ+

3(j2
x + j2

y)

ρ
, wερ+ wεj

(j2
x + j2

y)

ρ
, jx,−jx, jy,−jy,

j2
x − j2

y

3ρ
,
jxjy
3ρ

)T
with wε and wεj as adjustable parameters: for convergence to the single relaxation time BGK scheme, these

are set equal to 1 and −3 respectively. Of the 9 collision parameters available, s0, s3 and s5 have no effect

(except when applying external forces, when they should be set equal to one) as the associated moments are

preserved and s2, s4 and s6 are tuneable parameters for calculational stability with the condition that s4 = s6.

The remaining parameters represent the viscosities of the fluid, i.e.

ν =
1

3

(
1

s7
− 1

2

)
(∆x)

2

∆t
=

1

3

(
1

s8
− 1

2

)
(∆x)

2

∆t
≡ 1

3

(
τf −

1

2

)
(∆x)

2

∆t

ν′ =
1

6

(
1

s1
− 1

2

)
(∆x)

2

∆t
≡ 1

6

(
τf,bulk −

1

2

)
(∆x)

2

∆t

i.e. τf = 1
s7

= 1
s8

and τf,bulk = 1
s1

. If the moment-transformed source terms are to be used, the vector ~S for

this lattice scheme is defined as

~S =



0

6(uxFx + uyFy)

−6(uxFx + uyFy)

Fx

−Fx
Fy

−Fy
2(uxFx − uyFy)

uxFy + uyFx


.

Similar schemes are available for the D3Q15 and D3Q19 lattices (there is currently no MRT scheme available

for D3Q27). The MRT schemes without source terms can be applied using fCollisionMRT, while the schemes

with Guo-like moment-transformed source terms can be invoked using fCollisionMRTGuo.

5.1.2 Propagation algorithms

The simplest implementation, the two-lattice algorithm, involves the use of a temporary array (lbft) to copy

post-collisional distribution functions to their new positions, which are subsequently copied back to the main

distribution function array lbf. While this particular method is clear, easy to understand and can be applied

throughout the system’s lattice points in any order, its drawbacks include the use of two loops for propagation
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and array copying, two large arrays for the distribution functions at each lattice node and significant amounts of

time expended in memory access. If the user wishes to use this method, the routine fPropagationTwoLattice

is available.

An alternative, more efficient implementation of propagation is the swap algorithm[43], whereby this process

is carried out by systematic swapping of pairs of collided distribution function values. To make this easier to

implement, the lattice links are organised so that the conjugate link j to link i (i.e. êj = −êi) is equal to

i + m−1
2 for i = 1 . . . m−1

2 . Looping i between 1 and m−1
2 the post-collisional distribution functions for each

lattice point fi (~x) are initially swapped with their conjugate values fj (~x). then at each point the value fj (~x)

is then swapped with fi (~x+ êi∆t).

These sets of swaps can be carried out either in two separate steps or in one go. The use of separate swap steps

requires two sweeps through the domain, but the order in which the distribution functions are swapped does not

matter and no boundary domain is necessary for serial calculations. Simultaneous swapping cannot make use

of automatic periodic boundary conditions (thus a non-zero domain boundary is required) and requires lattice

links to be additionally ordered so that the first half are all directed to lattice points that have previously gone

through at least the first swap stage, but only a single sweep through the domain is required.

By default the serial version of DL MESO LBE uses the propagation routine that carries out two separate

swap steps – fPropagationSwap – while the parallel version uses the combined-swap propagation routine

fPropagationCombinedSwap. If the user wishes to use the combined-swap propagation routine in serial,

an alternative program slbecombine.cpp is available which includes the following notable modifications to

slbecustom.cpp:

� Replacement of fSetSerialDomain with fSetSerialDomainBuffer.

� Addition of fsBoundPeriodic and fMarkBoundArea immediately before fInitializeSystem.

� Addition of fsPeriodic inside main loop before calculating interaction forces (it does not matter whether

this is placed before or immediately after the call for creating output files).

� Addition of fsIndexPeriodic inside main loop before calculating interaction forces for the Lishchuk

algorithm (if these are not to be calculated, this call can be omitted).

� Addition of fsForcePeriodic inside main loop after calculating interaction forces (if these are not to be

calculated, this call can be omitted).

5.2 Boundary conditions

To apply boundary conditions to a Lattice Boltzmann Equation simulation, the distribution functions fi at

boundary lattice points have to be modified or replaced during each time step to give the required fluid velocity

or pressure/concentration/temperature. This may take place either between the collision and propagation stages

or at the end of each time step: the subroutines fPostCollBoundary and fPostPropBoundary respectively are

used to invoke the boundary conditions. The space property lbphi is used to define the boundary conditions

for each lattice node in the system.

5.2.1 Periodic

Periodic boundaries are used to simulate bulk fluids sufficiently far away from the actual boundaries of a real

physical system so that surface effects can be neglected. As the fluid moves out of one face of the system volume,

it reappears on the opposite face with the same velocity, density etc.

DL MESO LBE applies periodic boundary conditions in two different ways depending on the size of the bound-

ary domain lbdm.bwid. If there is no boundary domain (the default for serial running), periodic boundary
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conditions are automatically applied during the propagation step by using the function fCppMod to adjust the

destination of distribution functions leaving the system so they are placed at the opposite side. No periodic

boundary using this implementation needs to be defined by the space property, which can be left equal to zero

as for the bulk fluid.

For systems that include a non-zero boundary domain size, the distribution functions at the edges of the actual

system are copied into the buffer at the opposing sides before collisions and propagation take place. This requires

the use of the space property (lbphi[i]=10) to determine the location of the domain buffer – which can be

set up using the routine fMarkBoundArea – and either fsPeriodic and similar routines for serial running or

fNonBlockCommunication and similar routines for running in parallel to copy the distribution functions into

the buffers.

5.2.2 On-grid bounce-back

The on-grid bounce-back condition applies a no-slip condition (i.e. zero fluid velocity) at a boundary that lies

halfway between grid points. This is applied after the propagation stage by reversing the distribution functions

sitting on each wall node (~xw), i.e.

fi(~xw, t) = fj(~xw, t) (5.11)

where j is the opposite lattice link to i, i.e. êj = −êi. The reflection of distribution functions occurs on-grid.

On-grid bounce-back is a first-order approximation of the boundary condition[45], i.e. the error is proportional

to the lattice spacing ∆x, but it is completely local (i.e. only uses distribution functions at the wall node).

5.2.3 Mid-grid bounce-back

Like the on-grid version, the mid-grid bounce-back condition applies a no-slip condition at a boundary halfway

between lattice points[63]. This is applied by assigning post-collisional distribution functions to the wall node

based on those values at neighbouring points, i.e.

fi(~xw, t
+) = fj(~xw + êi∆t, t

+). (5.12)

This method essentially applies the actual reflection halfway between timesteps and is a spatially second-order

method, although it is weakly non-local due to its use of distribution functions from neighbouring nodes.

5.2.4 Constant pressure/velocity

To specify either velocities or densities (pressures) at planar boundaries, the Zou-He method[73] is available in

DL MESO LBE. This is based upon applying the bounce-back rule to the non-equilibrium distribution functions,

i.e.

f
(1)
i (~xw, t) = f

(1)
j (~xw, t) (5.13)

where f
(1)
i = fi− feqi , with the equilibrium distribution function feqi as a function of density and velocity. This

function can be used to determine the missing wall velocity or density along with the known distribution function

values. For instance, for a top edge with a known velocity ~vw using the D2Q9 lattice scheme (V??CEDF)1, the

wall density and missing distribution functions (all for the boundary node at ~xw) are given as:

ρw =
f0 + f2 + f6 + 2(f1 + f7 + f8)

1 + vw,y

f4 = f8 −
2ρwvw,y

3
f3 = f7 + 1

2 (f6 − f2)− 1
2ρwvw,x −

1
6ρwvw,y

f5 = f1 − 1
2 (f6 − f2) + 1

2ρwvw,x −
1
6ρwvw,y

1‘?’ denotes any valid letters for the solute composition and temperature.
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The other form, specifying the wall fluid density, requires the calculation of the wall velocity, which can be

simplified by setting non-orthogonal velocity components to zero. For the analogous example at the top wall

for D2Q9 (P??CEDF), the same equations for f4, f3 and f5 can be used together with

ρwvw,x = 0, ρwvw,y = f0 + f2 + f6 + 2(f1 + f7 + f8)− ρw.

One complication for three-dimensional lattices is the requirement to apply the non-equilibrium bounce-back

to all unknown distribution functions, which ordinarily overspecifies the system but can be counteracted using

transverse momentum corrections for directions other than orthogonal to the boundary, which are non-zero for

e.g. shearing flows. It should be noted that if the wall velocity is set to zero, the boundary condition reduces

to on-grid bounce-back.

DL MESO LBE includes implementations of the Zou-He boundary condition for all four lattice schemes: D2Q9,

D3Q15, D3Q19 and D3Q27. Only planar surfaces can be dealt with using this method; concave edges (in three-

dimensions) and concave corners instead use the equilibrium distribution function for the given density/velocity

and either zero velocity or the density at the nearest fluid grid point. An ‘evaporation limit’ is applied to the

density as a minimum limit for constant velocity edges and corners to prevent spurious production of non-

continuous fluids in multiple fluid systems: a default value of 10−8 is generally used but this can be overridden

by the user in the lbin.sys file.

5.2.5 Constant solute concentration/temperature

To specify constant solute concentrations or temperatures at planar boundaries, the Inamuro method[28, 27] is

used in DL MESO LBE. This is based upon substituting the unknown distribution functions for a boundary

point with local equilibrium values, but using an adjusted solute concentration or temperature to produce the

correct value for the property at that point. This concentration/temperature is obtained by substituting the

equilibrium distribution function for the unknown populations into the sum of distribution functions (equal to

the required concentration/temperature).

For example, for a top edge with a specified temperature Tw using the D2Q9 lattice scheme (??TCEDF), the

adjustment temperature T ′ is given as:

T ′ =
6

1− 3vw,y
(Tw − h0 − h1 − h2 − h6 − h7 − h8)

and the missing populations (i = 3, 4, 5 in this case) are given by

hi = wiT
′
[
1 + 3

(êi · ~vw)

c2

]
where ~vw is the known (or calculated) velocity for all fluids at the same boundary.

DL MESO LBE includes implementations of the Inamuro boundary condition for all four lattice schemes. Only

planar surfaces can be dealt with using this method; as for constant pressure boundaries, concave edges and

corners use the equilibrium distribution function for the required concentration/temperature and the known or

calculated velocity. On-grid bounce-back is used for Neumann (zero-gradient) conditions of solute concentrations

and/or temperature to keep this type of boundary condition entirely local.

5.3 Mesoscale interactions

DL MESO LBE includes a number of algorithms that can be used to apply interactions between fluid compo-

nents at the mesoscale, most commonly to model immiscible fluids. The user should take care to ensure the

correct model is used for the type of system being modelled.

If lbin.init files are used to insert fluid drops into the simulation domain, DL MESO LBE includes the option

of carrying out equilibration to allow the shapes of drops to settle by modelling the system without external
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body forces and boundaries imposing specific velocities, densities, solute concentrations or temperatures. This

option can be selected using the equilibration step keyword in the lbin.sys file.

5.3.1 Shan-Chen pseudopotential model

The Shan-Chen model[55, 56] models interactions between multiple phases and components by calculating

pairwise interaction potentials. These potentials use an ‘effective mass’ for each component, ψa, which is a

function of density and most frequently defined as

ψa (~x) = ρa0

[
1− exp

(
−ρ

a (~x)

ρa0

)]
(5.14)

where ρa is the local density of component a and ρa0 is the reference density for the same component. The

function in this form can be used to apply phase separation for a single component, and can be changed by the

user by modifying the subroutine fCalcPotential ShanChen.

Defining gab as the interaction coefficient between components a and b, the overall force on component a due

to interactions with other components is defined as

~F a = −ψa (~x)
∑
b

gab
∑
i

wiψ
b (~x+ êi) êi. (5.15)

and any suitable forcing algorithm can be used to apply this force on a Lattice Boltzmann Equation simulation.

For a particular interaction the resulting equation of state[53] is defined as

P = ρc2s +
1

2
c2sgabψ

2(ρ) (5.16)

and the interfacial tension between the components[54] is given as

σab = −e4gabc
4
s(∆x)2

2

∫ +∞

−∞

(
dψ

dz

)2

dz (5.17)

where e4 is a lattice-dependent constant and z distance along the normal from the phase interface.

Optional fluid-solid interaction forces can be added[41] for each fluid to control its wetting:

~F awet = −ψa (~x) ga,wall
∑
i

wis (~x+ êi) êi (5.18)

where s(~x) = 0 for a pore (fluid site) at position ~x and s(~x) = 1 for a solid site. The interaction coefficient

between component a and the wall, ga,wall, can be given a positive (negative) value to reduce (increase) its

wetting.

5.3.2 Lishchuk continuum-based model

The Lishchuk model[35, 20] is a modified form of the ‘chromodynamic’ model devised by Gunstensen and

Rothman[17], which models interactions between multiple components by applying forces based on the exis-

tence of those components. This continuum-based model is primarily suited for systems where hydrodynamic

interactions dominate and no further fluid separation takes place.

A phase field is defined between components a and b as

ρNab =
ρa − ρb

ρa + ρb
. (5.19)

noting that ρNba = −ρNab. First-order spatial differentials of this quantity can be determined by means of fourth-

order accurate isotropic schemes[21], e.g. for lattice points without neighbouring walls:

∇ρNab =
1

c2s∆t

∑
i

wiêiρ
N
ab (~x+ êi∆t) (5.20)
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and these can be used to determine the interfacial normal between the phases

n̂ab =
∇ρNab∣∣∇ρNab∣∣ (5.21)

which can subsequently be used to obtain the local curvature from the interface normal in the phase field

Kab = −∇S · n̂ab. (5.22)

The force acting between the components to give interfacial tension is given by

~F ab =
1

2
gabKab∇ρNab. (5.23)

Rather than colliding each fluid separately, a single ‘achromatic’ distribution function is defined as the sum of

distribution functions for all fluids

fi =
∑
a

fai (5.24)

the sum of which is equal to the density of all fluids, ρ. This distribution function is collided using any valid

method with all interaction forces combined together and collision operators interpolated according to local

mass fraction, e.g.
1

τf
=

1

ρ

∑
a

ρa

τaf
. (5.25)

After the achromatic fluid is collided, the fluids are segregrated to produce post-collisional distribution functions

for each fluid. This is achieved using the D’Ortona algorithm[9], which gives a non-zero boundary thickness

between the fluids and reduces non-physical effects such as pinning of drops to the lattice, spatial anisotropy

in interfacial tension and spurious microcurrents. The equation for the post-collisional segregated distribution

function for fluid a[61] is given as

fai
(
~x, t+

)
=
ρa

ρ
fi
(
~x, t+

)
+
∑
b6=a

βabwi
ρaρb

ρ2
êi · n̂ab (5.26)

where βab is a segregation parameter that controls the width of the diffuse boundary between phases and

βba = βab.

This method can directly simulate a specified interfacial tension (σab), which is related to the lattice-based

parameter gab by

σab =
4gabν

2ρ0

c4s (2τf − 1)
2

∆x
(5.27)

using the mean density (ρ0), kinematic viscosity (ν) and relaxation time (τf ) of a reference fluid (e.g. the

continuous fluid for the system).

The subroutine fCalcPhaseIndex Lishchuk calculates and stores the first derivatives of the phase indices,

which are subsequently used for force calculations – values from neighbouring lattice points are required for

calculations of interface curvature and the additional fIndexBlockCommunication routine will be required

for parallel running – and for postcollisional fluid segregation. The fCollision*Segregation routines, used in

place of the standard collision routines, carry out the achromatic collision of all fluids and D’Ortona segregation.

No solid-fluid interactions (i.e. wetting effects) are currently available in DL MESO LBE using this form of

mesoscopic interaction.

5.4 Diffusion and heat transfer

In a similar fashion to multiple fluid systems, the Lattice Boltzmann Equation method can be applied to

problems involving diffusion and/or heat transfers by using additional distribution functions for each solute

and/or temperature[27, 72].
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For a system consisting of a number of dilute solutes along with a bulk fluid, the governing equation for each

solute is given as

gi (~x+ êi∆t, t+ ∆t)− gi (~x, t) = −∆t

τs
[gi (~x, t)− geqi ] (5.28)

where gi is the distribution function for the solute and τs the solute relaxation time, which is related to its

diffusivity

D =
1

3

(
τs −

1

2

)
(∆x)

2

∆t

and the Schmidt number can be determined by

Sc =
ν

D
=

2τf − 1

2τs − 1
.

Taking the concentration of the solute as Cs =
∑
i gi, the equilibrium distribution function for the solute is

given by a simpler form of Equation 3.11:

geqi = wiCs

[
1 + 3

(êi · ~u)

c2

]
(5.29)

where the velocity used is that of the bulk fluid.

Heat transfers can be coupled to the system in a similar manner, using a thermal distribution function hi and

a thermal relaxation time τt, which gives the governing equation

hi (~x+ êi∆t, t+ ∆t)− hi (~x, t) = −∆t

τt
[hi (~x, t)− heqi ] (5.30)

The temperature at each lattice point (relative to a mean value) can be determined as the sum of the distribution

functions, T =
∑
i hi, which can be used to determine the equilibrium distribution function

heqi = wiT

[
1 + 3

(êi · ~u)

c2

]
, (5.31)

again using the bulk fluid velocity. The thermal relaxation time is related to the thermal diffusivity

α =
1

3

(
τt −

1

2

)
(∆x)

2

∆t

with the Prandtl number for the system determined by a ratio of relaxation times, i.e.

Pr =
ν

α
=

2τf − 1

2τt − 1
.

It should be noted that if multiple-relaxation-time (MRT) schemes are to be used, these only apply to fluids:

all diffusion and heat transfer processes are calculated using the single relaxation time schemes described in this

section.

5.4.1 Boussinesq approximation

The coupling of fluid flows to heat transfer described above only produces heat conduction effects. To model

convective heat transfer processes, an additional force on the fluid is required to link flow to thermal trans-

port. The most common form is the Boussinesq approximation[18], which applies a buoyancy force on fluid a

proportional to the temperature difference:

~F a = −ρ~gβa
(
T − T0

Th − Tl

)
(5.32)

where ~g is gravitational acceleration, βa is the volumetric expansion coefficient for fluid a, Th and Tl are

respectively the maximum and minimum temperatures of the system and T0 = 1
2 (Th + Tl) is a reference

temperature.

DL MESO LBE provides the routine fConvectionForceBoussinesq to calculate this force. The product of

gravitational acceleration and volumetric expansion (~gβa) for each fluid, as well as the maximum and minimum

temperatures Th and Tl, can be included in the lbin.sys file.
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5.5 Compressible and incompressible fluids

The standard Lattice Boltzmann Equation scheme is capable of modelling compressible fluids. Incompressible

fluids can be modelled by making a simple modification to the local equilibrium distribution function[24]:

feqi = wi

[
ρ+ ρ0

(
3 (êi · ~u)

c2
+

9 (êi · ~u)
2

2c4
− 3u2

2c2

)]
(5.33)

where ρ0 is the fixed density of the incompressible fluid and the density ρ becomes an analogue to pressure

( Pρ0 = c2sρ). While Equation 3.1 is still applicable to calculate ρ, the fluid velocity is now calculated by

ρ0uα =

q∑
i=0

fieiα (5.34)

DL MESO LBE allows users to select incompressible fluids by means of the variable incompress, whose value

can be selected using the keyword incompressible fluids in the lbin.sys file. Additional collision and

equilibrium distribution function routines ending in Incom are included to allow the user to model incompressible

fluids. All of these routines use a specified constant density for each fluid in the system (lbincp) as the value

of ρ0.
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DL MESO LBE Input and Output Files

6.1 Input files

All user-specified input files for DL MESO LBE must be in ANSI text format, with keywords (where necessary)

and numerical values separated from each other with spaces or tabs.

Define system: lbin.sys

The use of the DL MESO GUI is recommended for producing lbin.sys, although existing files of that name can

also be edited. Its format consists of a keyword and an associated numerical parameter on each line separated

by spaces or tabs. No allowances are made for typographical errors or abbreviations in keywords, which must

be included in full and in the form described below.

Ten keywords are compulsory for all LBE simulations, as these determine the lattice scheme to be used, the

number of lattices to use, and the sizes of the system and boundary regions.

keyword: meaning:

space dimension sets the number of dimensions in the system (2 or 3)

discrete speed sets the number of lattice links per grid point (9, 15, 19 or 27)

number of fluid sets the number of fluid lattices for the system (if modelling solutes, this must

be set to 1)

number of solute sets the number of solutes to be modelled

temperature scalar determines whether or not a lattice is needed to model heat transfers (set to 1

if needed, 0 if not)

phase field determines whether or not a lattice is needed to represent phase fields (set to

1 if needed, 0 if not)1

grid number x sets the number of grid points in the x-dimension

grid number y sets the number of grid points in the y-dimension

grid number z sets the number of grid points in the z-dimension (if a two-dimensional system

is modelled, this will be reset to 1)

domain boundary width sets the size of the boundary region (if running DL MESO in serial, this is

usually reset to 0)

Additional keywords can be used to specify the algorithms for collisions, forcing and mesophase interac-

tions, the format for output files and whether fluids are compressible or incompressible. If these are omit-

ted, DL MESO LBE will assume that the fluids are compressible and subjected to BGK (single-relaxation-

1No multiple fluid phase scheme included in DL MESO currently requires this lattice.

55
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time) collisions using standard forcing without mesophase interactions. (If using the customizable versions of

DL MESO LBE, all of these keywords may be omitted except for incompressible fluids, which is required

to correctly calculate fluid velocities in initialization and output files and apply boundary conditions.)

keyword: meaning:

collision type sets the type of collisions and forcing (BGK (0), BGKGuo (1), MRT (2) or MRTGuo

(3)2)

interaction type sets the type of mesophase interactions3 (ShanChen (1), ShanChenWetting (2)

or Lishchuk (3))

output format sets the format for output files (VTK (0), LegacyVTK (1), Plot3D (2))

incompressible fluids determines whether or not the fluids should be incompressible (set to 0 for

compressible fluids, 1 for incompressible fluids)

The following keywords can be used to specify other information, such as fluid densities, velocities, relaxation

times or frequencies etc. Superfluous parameters can be omitted, while new ones would require additions to

the parameter recognition loop in the fInputParameters subroutine in lbpIO. Note that if there are duplicate

entries for any keyword, the value associated with the last one in the lbin.sys file will be used.

keyword: meaning:

total step sets total number of timesteps for the simulation

equilibration step sets number of timesteps for equilibration of the simulation (without solid

boundary conditions or external forcing)

save span sets interval for writing output files

noise intensity gives maximum variation in initial fluid densities for multiple fluid systems

evaporation limit gives minimum fluid density for non-continuous fluids when dealing with edge

or corner boundaries

sound speed sets speed of sound for fluid 0 in real-life (i.e. non-lattice-based) units

kinetic viscosity sets kinematic viscosity for fluid 0 in real-life units

total step sets total number of timesteps for the simulation

speed ini n sets initial velocity for all fluids (n = 0 for x-component, n = 1 for y-component,

n = 2 for z-component)

speed top n sets velocity at top boundary for all fluids

speed bot n sets velocity at bottom boundary for all fluids

speed lef n sets velocity at left boundary for all fluids

speed rig n sets velocity at right boundary for all fluids

speed fro n sets velocity at front boundary for all fluids

speed bac n sets velocity at back boundary for all fluids

density ini f sets initial density for fluid f throughout system (f between 0 and lbsy.nf−1)

density inc f sets constant density for incompressible fluid f

density top f sets density for fluid f at top boundary

density bot f sets density for fluid f at bottom boundary

density lef f sets density for fluid f at left boundary

density rig f sets density for fluid f at right boundary

density fro f sets density for fluid f at front boundary

density bac f sets density for fluid f at back boundary

relaxation fluid f sets relaxation time (τf ) for fluid f

relax freq fluid f sets relaxation frequency (τ−1
f ) for fluid f

2Either the keyword or the number can be used to specify the types.
3If set to an unrecognised word or to 0, interactions will be switched off.
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bulk relaxation fluid f sets bulk relaxation time (τf,bulk) for fluid f

bulk relax freq fluid f sets bulk relaxation frequncy (τ−1
f,bulk) for fluid f

solute ini s sets initial concentration for solute s throughout system (s between 0 and

lbsy.nc− 1)

solute top s sets concentration for solute s at top boundary

solute bot s sets concentration for solute s at bottom boundary

solute lef s sets concentration for solute s at left boundary

solute rig s sets concentration for solute s at right boundary

solute fro s sets concentration for solute s at front boundary

solute bac s sets concentration for solute s at back boundary

relax solute s sets relaxation time (τs) for solute s

relax freq solute s sets relaxation frequency (τ−1
s ) for solute s

temperature ini sets initial temperature throughout system

temperature top sets temperature at top boundary

temperature bottom sets temperature at bottom boundary

temperature left sets temperature at left boundary

temperature right sets temperature at right boundary

temperature front sets temperature at front boundary

temperature back sets temperature at back boundary

heating rate sys sets rate of change in temperature (with time based on real-life units) through-

out system

heating rate top sets rate of change in temperature at top boundary

heating rate bottom sets rate of change in temperature at bottom boundary

heating rate left sets rate of change in temperature at left boundary

heating rate right sets rate of change in temperature at right boundary

heating rate front sets rate of change in temperature at front boundary

heating rate back sets rate of change in temperature at back boundary

relax thermal sets thermal relaxation time (τt)

relax freq thermal sets thermal relaxation frequency (τ−1
t )

body force n sets constant external body force on fluid f : n = 3f for x-component, n = 3f+1

for y-component, n = 3f + 2 for z-component

body force x f sets x-component of constant external body force on fluid f

body force y f sets y-component of constant external body force on fluid f

body force z f sets z-component of constant external body force on fluid f

boussinesq force n sets Boussinesq force constant (~gβ) for fluid f : n = 3f for x-component, n =

3f + 1 for y-component, n = 3f + 2 for z-component

boussinesq force x f sets x-component of Boussinesq force constant (~gβ) for fluid f

boussinesq force y f sets y-component of Boussinesq force constant (~gβ) for fluid f

boussinesq force z f sets z-component of Boussinesq force constant (~gβ) for fluid f

boussinesq boussinesq high sets high reference temperature for Boussinesq convection (Th)

boussinesq boussinesq low sets low reference temperature for Boussinesq convection (Tl)

interaction n sets interaction parameter between fluids f1 and f2: n = lbsy.nf× f1 + f2

interaction f1 f2 sets interaction parameter between fluids f1 and f2

segregation sets fluid segregation parameter between all fluids species

segregation n sets fluid segregation parameter between fluids f1 and f2: n = lbsy.nf×f1+f2

segregation f1 f2 sets fluid segregation parameter between fluids f1 and f2

Define space: lbin.spa

The GUI is recommended for creating the lbin.spa file, which stores the data in the following format:
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x,y,z,grid property

An empty lbin.spa file represents all boundaries as periodic.

Define initial condition: lbin.init

This optional file cannot currently be created by the GUI: the user must create this file or use the utility

lbeinitcreate if it is required. The following format is required for each lattice point whose default velocity,

fluid densities, solute concentrations or temperature needs replacing:

x,y,z,ux,uy,uz,ρ
0 . . . ρlbsy.nf−1,c0 . . . clbsy.nc−1,T

Note that three values for each grid position and velocity must be included (the values for z-components in two-

dimensional simulations must be set to zero). At each grid point specified, density/concentration/temperature

values must be included for all lattices used in calculations: the total number of values in each line must be

equal to 6 + lbsy.nf + lbsy.nc + lbsy.nt.

6.2 Output files

DL MESO LBE prints information about the simulation to the screen or standard output:

� welcome messages

� a description of the simulation to be carried out

� details of domain decomposition if running in parallel

� reports on the masses and momentum of fluids in the system at user-specified intervals

� a final summary including a calculation efficiency measure and a reminder to cite DL MESO for any

published results

This information can be directed to a file specified at the command line, e.g. by launching DL MESO LBE

using the command

� ./lbe.exe > OUTPUT

Snapshots of the simulation can be written in Structured Grid XML VTK, Structured Grid Legacy VTK and

standard Plot3D data format, in binary format for parallel calculations and ANSI for serial. These may be

modified by the user as required. The utility lbeplot3dgather in the LBE/utility directory can combine

Plot3D files generated in parallel, while Parallel Structured Grid XML VTK files (lbtout*.pvts) that refer to

the files from each processor can be created using the utility lbevtkgather: further details can be found in

Appendix B or the README file in the same directory. By default all properties for a simulation – fluid densities,

mass fractions, solute concentrations and temperatures – are written to each output file (or to individual output

files for Plot3D for each property). The customizable version of DL MESO LBE allows users to select which

properties should be written to output files.
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Structured Grid XML VTK format: lbout*.vts

Structured Grid VTK files written by DL MESO LBE include the lattice dimensions (numbers of grid points

in each direction), the Cartesian coordinates of the grid points in real-life units, and the same data as in Legacy

VTK files. Output files produced in serial include the data between XML tags, e.g. <DataArray>, while those

produced in parallel use the <DataArray> tags to refer to the starting point for the data in a stream of binary

numbers inside an <AppendedData> tag. The latter files represent the data in each subdomain and should

be retained when plotting the entire system since the parallel VTK format links to these rather than creates

autonomous files for the entire system.

Legacy VTK format: lbout*.vtk

Legacy VTK files written by DL MESO LBE include the lattice dimensions (numbers of grid points in each

direction), the Cartesian coordinates of the grid points in real-life units, and the following data:

� A scalar property (fluid density, mass fraction, solute concentration or scalar temperature), e.g.

ρ0,0,0

. . .

ρnx−1,ny−1,nz−1

� Fluid velocity

U0,0,0 V0,0,0 W0,0,0

. . .

Unx−1,ny−1,nz−1 Vnx−1,ny−1,nz−1 Wnx−1,ny−1,nz−1

� The space (boundary condition) property

φ0,0,0

. . .

φnx−1,ny−1,nz−1

If all properties are to be output, they are all included in the same file for each time step under unique names.

Plot3D format

Output grid position: lbout*.xyz

nx, ny, nz

x0,0,0, . . . xnx−1,ny−1,nz−1

y0,0,0, . . . ynx−1,ny−1,nz−1

z0,0,0, . . . znx−1,ny−1,nz−1

where nx is the total number of grid points in x-direction, ny is the total number of grid points in y-direction,

nz is the total number of grid points in z-direction and (xi,j,k, yi,j,k, zi,j,k) is the Cartesian coordinate of grid

point (i, j, k).
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Output macroscopic quantities: lbout.q

nx, ny, nz

c, 1.0, Re, t

ρ0,0,0, . . . ρnx−1,ny−1,nz−1, U0,0,0, . . . Unx−1,ny−1,nz−1

V0,0,0, . . . Vnx−1,ny−1,nz−1,W0,0,0, . . .Wnx−1,ny−1,nz−1

φ0,0,0, . . . φnx−1,ny−1,nz−1

where c is the speed of sound for the lattice, Re the Reynolds number for the flow, t the time step, ρ the

density, U the x-component of velocity, V the y-component of velocity, W the z-component of velocity and φ

the space (boundary condition) property. (The 1.0 between the lattice speed of sound and flow Reynolds number

represents the freestream angle of attack.) The density of the fluid may be replaced with its concentration or

scalar temperature.

If all properties are output, each property is given a uniquely named file based on the number of fluid or

solute (e.g. lbout00dens*.q for the density of fluid 0) and its property (lbout*dens*.q, lbout*frac*.q,

lbout*conc*.q and lbouttemp*.q).



Chapter 7

DL MESO LBE Package Reference

7.1 Overview

DL MESO LBE consists of nine packages:

� lbpMODEL

Contains subroutines to assign lbw, lbv and lbopv for D2Q9, D3Q15, D3Q19 and D3Q27 lattice models.

� lbpBASIC

Contains general purpose subroutines which can be used elsewhere, e.g. a random number generator

producing values between −1 and 1.

� lbpGET

Contains subroutines to calculate macroscopic quantities, e.g. macroscopic density, speed and momentum.

� lbpIO*

Contain subroutines to read parameters and write numerical results for plotting and visualization:

– lbpIO

Contains subroutines to read input files, calculate and write summaries.

– lbpIOPlot3D

Contains subroutines to write calculation output files in Plot3D format.

– lbpIOLegacyVTK

Contains subroutines to write calculation output files in Legacy VTK (structured grid) format.

– lbpIOVTK

Contains subroutines to write calculation output files in XML VTK (structured grid) format.

� lbpBOUND

Contains subroutines for boundary conditions, e.g. calculating the particle distribution function in a shear

boundary.

� lbpFORCE

Contains subroutines to calculate non-constant forces, e.g. immiscible fluid-fluid interactions.

� lbpSUB

Contains the most important subroutines for Lattice Boltzmann calculations, e.g. particle propagation

and site collision.

� lbpRUN*

Contain the major program loops to carry out Lattice Boltzmann calculations (lbpRUNSER for serial

running, lbpRUNPAR for parallel).
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� lbpMPI

Contains all subroutines necessary for parallel computation. This package can be left out if the user uses

only a single-processor workstation or a Windows PC.

It is recommended that DL MESO users put self-defined subroutines into a package called lbpUSER so upgrades

of DL MESO will not interfere with their contributions.

7.2 DL MESO LBE Subroutines and Functions

7.2.1 main

There are two primary versions of the main DL MESO LBE program: serial (slbe.cpp) and parallel (plbe.cpp).

These provide calls to the main loops for Lattice Boltzmann calculations in lbpRUN* and allow the use of input

files to select collision, forcing and mesophase interaction algorithms, as well as output file formats and whether

fluids are compressible or incompressible. These programs do not need to be modified by the user if the provided

code features are to be used.

Alternative versions of the program, slbecustom.cpp and plbecustom.cpp for serial and parallel running

respectively, are also provided. The user may wish to modify these listings to use user-defined routines and

functions, as well as different outputs and formats, alternative collision routines, boundary conditions that move

through the system etc. These versions reduce the number of logic statements required to run and thus may

be used if greater computational efficiency is required. An additional version of the serial program is available

which uses a boundary layer of lattice points (slbecombine.cpp). Appendix A gives more details on using

these versions of the program.

7.2.2 lbpMODEL

D2Q9

� Header records

int D2Q9()

� Function

Assign the weight factor lbw, speed vector lbv, index for opposite speed vector lbopv, MRT transformation

matrices (lbtr and lbtrinv) and tuneable parameters (lbmrts and lbmrtw) for the D2Q9 lattice model.

� Dependencies

None

D3Q15

� Header records

int D3Q15()

� Function

Assign the weight factor lbw, speed vector lbv, index for opposite speed vector lbopv, MRT transformation

matrices (lbtr and lbtrinv) and tuneable parameters (lbmrts and lbmrtw) for the D3Q15 lattice model.

� Dependencies

None
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D3Q19

� Header records

int D3Q19()

� Function

Assign the weight factor lbw, speed vector lbv, index for opposite speed vector lbopv, MRT transformation

matrices (lbtr and lbtrinv) and tuneable parameters (lbmrts and lbmrtw) for the D3Q19 lattice model.

� Dependencies

None

D3Q27

� Header records

int D3Q27()

� Function

Assign the weight factor lbw, speed vector lbv and the index for opposite speed vector lbopv for the

D3Q27 lattice model.

� Dependencies

None

� Comments

No Multiple-Relaxation-Time (MRT) scheme is currently available for this lattice.

7.2.3 lbpBASIC

This package contains general purpose functions which are not directly related to the Lattice Boltzmann Equa-

tion method. These may be replaced with any suitable functions in C++ standard libraries.

fCppAbs

� Header records

template <class T>

T fCppAbs(T a)return (a<0)?-a:a;

� Function

Calculate absolute value of number a.

� Dependencies

None

� Arguments

a input any datatype

fCppAbs output same datatype as a

fReciprocal

� Header records

template <class T>

T fReciprocal(T a)return (a!=0)?1/a:0;
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� Function

Calculates reciprocal of a for all non-zero values; returns zero for a = 0.

� Dependencies

None

� Arguments

a input any datatype

fReciprocal output same datatype as a

fEvapLimit

� Header records

template <class T>

T fEvapLimit(T a)return (a<lbevaplim)?0:a;

� Function

Returns zero for values of a less than the specified evaporation limit lbevaplim.

� Dependencies

None

� Arguments

a input any datatype

fEvapLimit output same datatype as a

� Comments

This function is used to eliminate spurious production of non-continuous fluids at boundary edges and

corners. The default value of lbevaplim (10−8) can be overridden by the user.

fSwapPair

� Header records

template <class T> void fSwapPair ( T& a, T& b)

� Function

Swaps pair of numbers, a and b.

� Dependencies

None

� Arguments

a input/output any datatype

b input/output any datatype

fGetNumberOrdered

� Header records (two cases)

int fGetNumberOrdered(int &iox, int &ioy, int &ioz)

int fGetNumberOrdered(int &iox, int &ioy)

� Function

Rearrange the integers in descending order.

� Dependencies

None
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� Arguments

iox input/output integer reference

ioy input/output integer reference

ioz input/output integer reference

fGetNumberOrderFixed

� Header records (two cases)

int fGetNumberOrderFixed(int &iox, int &ioy, int &ioz, int ix, int iy, int iz)

int fGetNumberOrderFixed(int &iox, int &ioy, int ix, int iy)

� Function

Rearrange a set of integers so they appear in the same order as another set of integers.

� Dependencies

fGetNumberOrdered

� Arguments

iox input/output integer reference

ioy input/output integer reference

ioz input/output integer reference

ix input integer

iy input integer

iz input integer

fBestGrouping

� Header records

int fBestGrouping(int totalgrid, int totalgroup, int& indigrid, int& critigroup)

� Function

Distribute grid points among the processes to give a maximum of one to the differences in the numbers

of grid points.

� Dependencies

None

� Arguments

totalgrid input integer

totalgroup input integer

indigrid output integer reference

critigroup output integer reference

� Comments

The totalgrid grid points are distributed among totalgroup processes so that the first critigroup

processes have indigrid grid points and the others have indigrid-1.

fCppMod

� Header records (two cases)

int fCppMod(int a, int b)

long fCppMod(long a, long b)

� Function

Ensure that a is in a range between 0 and b-1, so that the value beyond the maximum value equals the

minimum, and vice versa.
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� Dependencies

None

� Arguments

a input integer/long integer

b input integer/long integer

fCppMod output integer/long integer

� Comments

fCppMod = a-b when a >= b or fCppMod = a+b when a < 0. This function is useful for periodic boundary

conditions.

fPrintLine

� Header records

int fPrintLine()

� Function

Prints a line of 76 - characters.

� Dependencies

None

fPrintDoubleLine

� Header records

int fPrintDoubleLine()

� Function

Prints a line of 76 = characters.

� Dependencies

None

fRandom

� Header records

double fRandom()

� Function

Creates a double precision random number between −1 and 1.

� Dependencies

None

� Arguments

fRandom output double precision

� Comments

There is a built-in seed in the function, which is only activated when the function is initially called.
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fBigEndian

� Header records

int fBigEndian()

� Function

Determines endianness for machine: returns 1 for big endian, 0 for little endian.

� Dependencies

None

fByteSwap

� Header records

void fByteSwap(void *data, int len, int count)

� Function

Converts between endian types by swapping byte order of array data (with byte size per entry len and

count entries).

� Dependencies

None

� Arguments

data input/output void

len input integer

count input integer

� Comments

Primarily required for writing binary files where a specific endianness is required, e.g. .vtk files are

required in big endian.

fCheckTimeSerial

� Header records

double fCheckTimeSerial()

� Function

Outputs time in seconds since initial call.

� Dependencies

None

� Arguments

fCheckTimeSerial output double

� Comments

Obtains calculation time based on system clock; parallel calculations may obtain greater timing accuracy

with fCheckTimeMPI.

7.2.4 lbpGET

fGetNodePosi

� Header records (two cases: 3D and 2D)

inline long fGetNodePosi(int xpos, int ypos, int zpos)

inline long fGetNodePosi(int xpos, int ypos)
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� Function

Calculates the position of the grid point in a one-dimensional array from its Cartesian coordinate.

� Dependencies

None

� Arguments

xpos input integer

ypos input integer

zpos input integer

fGetNodePosi output long integer

� Comments

The calculation follows the standard C++ data structure (row-major).

fGetCoord

� Header records (two cases: 3D and 2D)

int fGetCoord(long tpos, int& xpos, int& ypos, int& zpos)

int fGetCoord(long tpos, int& xpos, int& ypos)

� Function

Calculates the Cartesian coordinate of a grid point from its position in a one-dimensional array.

� Dependencies

None

� Arguments

xpos output integer reference

ypos output integer reference

zpos output integer reference

tpos input long integer

fGetOneMassSite

� Header records (three cases)

double fGetOneMassSite(double* startpos)

double fGetOneMassSite(int fpos, long tpos)

double fGetOneMassSite(int fpos, int xpos, int ypos, int zpos)

� Function

Calculates the mass density of one of the fluids at a grid point.

� Dependencies

None

� Arguments

startpos input double pointer

fpos input integer

tpos input long integer

xpos input integer

ypos input integer

zpos input integer

fGetOneMassSite output double precision
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� Comments

Mass density is calculated according to the definition ρ =
∑
i fi. In the first case, startpos is the start

point for the summation of particle distribution functions and must be assigned correctly. The second

case carries out the same calculation for the fpos-th fluid and tpos-th grid point, while the third carries

it out for the fpos-th fluid at the grid point indicated by the Cartesian coordinate (xpos, ypos, zpos).

The latter two are more readable to the user but a bit slower to carry out.

fGetAllMassSite

� Header records (three cases)

int fGetAllMassSite(double *rho, double* startpos)

int fGetAllMassSite(int fpos, long tpos)

int fGetAllMassSite(int fpos, int xpos, int ypos, int zpos)

� Function

Calculates the individual mass densities of all fluids at a grid point.

� Dependencies

None

� Arguments

startpos input double pointer

tpos input long integer

xpos input integer

ypos input integer

zpos input integer

rho output double precision array

� Comments

Mass density is calculated according to the definition ρ =
∑
i fi. In the first case, startpos is the start

point for the summation of particle distribution functions and must be assigned correctly. The second

case carries out the same calculation for the tpos-th grid point, while the third carries it out at the grid

point indicated by the Cartesian coordinate (xpos, ypos, zpos). The latter two are more readable to the

user but a bit slower to carry out.

fGetTotMassSite

� Header records (two cases)

double fGetTotMassSite(double* startpos)

double fGetTotMassSite(long tpos)

� Function

Calculates the total mass density of all fluids at a grid point.

� Dependencies

None

� Arguments

startpos input double pointer

tpos input long integer

fGetTotMassSite output double precision

� Comments

Mass density is calculated according to the definition ρ =
∑
i fi. The second case carries out the same

calculation as the first but using tpos for the grid point.
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fGetOneMassDomain

� Header records

double fGetOneMassDomain(int fpos)

� Function

Calculates the total mass of fpos-th fluid in the domain.

� Dependencies

None

� Arguments

fpos input integer

fGetOneMassDomain output double precision

� Comments

The total mass of the domain does not include boundary areas used for message passing or nodes used to

apply boundary conditions.

fGetTotMassDomain

� Header records

double fGetTotMassDomain()

� Function

Calculates the total mass of all fluids in the domain.

� Dependencies

None

� Arguments

fGetTotMassDomain output double precision

� Comments

The total mass of the domain does not include boundary areas used for message passing or nodes used to

apply boundary conditions.

fGetFracSite

� Header records (three cases)

double fGetFracSite(int fpos, double* startpos)

double fGetFracSite(int fpos, long tpos)

double fGetFracSite(int fpos, int xpos, int ypos, int zpos)

� Function

Calculates the mass fraction of fluid fpos in the site.

� Dependencies

fReciprocal

� Arguments

startpos input double pointer

fpos input integer

tpos input long integer

xpos input integer

ypos input integer

zpos input integer

fGetFracSite output double precision
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� Comments

The calculation is based on z = ρi∑
i ρi

. This function operates in a similar way to fGetOneMassSite with

the second and third cases slightly slower than the first but more readable.

fGetOneConcSite

� Header records (two cases)

double fGetOneConcSite(int cpos, long tpos)

double fGetOneConcSite(int cpos, int xpos, int ypos, int zpos)

� Function

Calculates the concentration of solute cpos at the grid point.

� Dependencies

fGetOneMassSite

� Arguments

tpos input long integer

cpos input integer

xpos input integer

ypos input integer

zpos input integer

fGetFracSite output double precision

fGetTemperatureSite

� Header records (two cases)

double fGetTemperatureSite(long tpos)

double fGetTemperatureSite(long xpos, long ypos, long zpos)

� Function

Calculates the scalar temperature at the grid point.

� Dependencies

fGetOneMassSite

� Arguments

tpos input long integer

xpos input long integer

ypos input long integer

zpos input long integer

fGetFracSite output double precision

fGetOneSpeedSite

� Header records (three cases)

int fGetOneSpeedSite(double *speed, double* startpos)

int fGetOneSpeedSite(double *speed, int fpos, long tpos)

int fGetOneSpeedSite(double *speed, int fpos, int xpos, int ypos, int zpos)

� Function

Calculates the macroscopic speed of (compressible) fluid fpos at the grid point.

� Dependencies

fReciprocal
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� Arguments

startpos input double pointer

fpos input integer

tpos input long integer

xpos input integer

ypos input integer

zpos input integer

speed output double precision array

� Comments

The calculation is based on vα =
∑
i fieiα
ρ . The second and third cases are slightly slower than the first

but more readable.

fGetOneSpeedIncomSite

� Header records (three cases)

int fGetOneSpeedIncomSite(double *speed, double* startpos, double rho0)

int fGetOneSpeedIncomSite(double *speed, int fpos, long tpos)

int fGetOneSpeedIncomSite(double *speed, int fpos, int xpos, int ypos, int zpos)

� Function

Calculates the macroscopic speed of incompressible fluid fpos at the grid point.

� Dependencies

fReciprocal

� Arguments

startpos input double pointer

rho0 input double precision

fpos input integer

tpos input long integer

xpos input integer

ypos input integer

zpos input integer

speed output double precision array

� Comments

The calculation is based on vα =
∑
i fieiα
ρ0

. The second and third cases are slightly slower than the first

but more readable.

fGetSpeedSite

� Header records (three cases)

int fGetSpeedSite(double *speed, double* startpos)

int fGetSpeedSite(double *speed, long tpos)

int fGetSpeedSite(double *speed, int xpos, int ypos, int zpos)

� Function

Calculates the macroscopic speed of all (compressible) fluids at the grid point.

� Dependencies

fReciprocal
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� Arguments

startpos input double pointer

tpos input long integer

xpos input integer

ypos input integer

zpos input integer

speed output double precision array

� Comments

The calculation is based on vα =
∑
i fieiα
ρ . The second and third cases are more readable than the first

but also slightly slower.

fGetSpeedIncomSite

� Header records (three cases)

int fGetSpeedIncomSite(double *speed, double* startpos)

int fGetSpeedIncomSite(double *speed, long tpos)

int fGetSpeedIncomSite(double *speed, int xpos, int ypos, int zpos)

� Function

Calculates the macroscopic speed of all incompressible fluids at the grid point.

� Dependencies

fReciprocal

� Arguments

startpos input double pointer

tpos input long integer

xpos input integer

ypos input integer

zpos input integer

speed output double precision array

� Comments

The calculation is based on vα =
∑
i fieiα
ρ0

. The second and third cases are more readable than the first

but also slightly slower.

fGetOneMomentSite

� Header records (three cases)

int fGetOneMomentSite(double *speed, double* startpos)

int fGetOneMomentSite(double *speed, int fpos, long tpos)

int fGetOneMomentSite(double *speed, int fpos, int xpos, int ypos, int zpos)

� Function

Calculates the momentum of one of the fluids at the grid point.

� Dependencies

None
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� Arguments

startpos input double pointer

fpos input integer

tpos input long integer

xpos input integer

ypos input integer

zpos input integer

speed output double precision array

� Comments

The calculation is based on pα =
∑
i fieiα. The second and third cases are more readable than the first

but also slightly slower.

fGetTotMomentSite

� Header records

int fGetTotMomentSite(double *speed, double* startpos)

� Function

Calculates the momentum of all fluids at the grid point.

� Dependencies

None

� Arguments

startpos input double pointer

speed output double precision array

fGetTotMomentDomain

� Header records

int fGetTotMomentDomain(double *momentum)

� Function

Calculates the momentum of all fluids in the domain.

� Dependencies

fGetTotMomentSite

� Arguments

momentum output double precision array

� Comments

This function is mainly used to verify that the domain momentum along each axis is conserved.

fGetOneDirecSpeedSite

� Header records (three cases)

float fGetOneDirecSpeedSite(int dire, double* startpos)

float fGetOneDirecSpeedSite(int dire, long tpos)

float fGetOneDirecSpeedSite(int dire, int xpos, int ypos, int zpos)

� Function

Calculates the grid speed for all (compressible) fluids along direction dire: 0 for x, 1 for y and 2 for z.
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� Dependencies

fReciprocal

� Arguments

startpos input double pointer

tpos input long integer

xpos input integer

ypos input integer

zpos input integer

dire input double pointer

fGetOneDirecSpeedSite output floating point

� Comments

Mainly used to output grid speed. The second and third cases are more readable than the first but also

slightly slower.

fGetOneDirecSpeedIncomSite

� Header records (three cases)

float fGetOneDirecSpeedIncomSite(int dire, double* startpos)

float fGetOneDirecSpeedIncomSite(int dire, long tpos)

float fGetOneDirecSpeedIncomSite(int dire, int xpos, int ypos, int zpos)

� Function

Calculates the grid speed for all incompressible fluids along direction dire: 0 for x, 1 for y and 2 for z.

� Dependencies

fReciprocal

� Arguments

startpos input double pointer

tpos input long integer

xpos input integer

ypos input integer

zpos input integer

dire input double pointer

fGetOneDirecSpeedIncomSite output floating point

� Comments

Mainly used to output grid speed. The second and third cases are more readable than the first but also

slightly slower.

7.2.5 lbpIO

fDefineSystem

� Header records

int fDefineSystem(const char* filename = "lbin.sys")

� Function

Reads calculation parameters (lattice scheme, types of collisions and forcing, mesophase algorithms, num-

bers of fluids, solutes, temperature scalars, phase field order parameters, grid size) from input system file

lbin.sys.
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� Dependencies

lbin.sys data file

� Arguments

filename input array of characters

� Comments

The default file name is lbin.sys: to use different file names the argument for this routine can be changed

by the user.

fPrintSystemInfo

� Header records

int fPrintSystemInfo()

� Function

Prints system information (lattice model, dimensions, boundary width, numbers of fluids, solutes and

temperature scalars, collision model, forcing type and mesophase interactions).

� Dependencies

None

fPrintEndEquilibration

� Header records

int fPrintEndEquilibration()

� Function

Prints message indicating end of static equilibration process.

� Dependencies

None

� Comments

This message is not printed if no equilibration steps are specified in the lbin.sys file.

fPrintDomainMass

� Header records

int fPrintDomainMass()

� Function

Calculates and prints total and individual fluid masses in domain.

� Dependencies

double fGetTotMassDomain()

double fGetOneMassDomain()

� Comments

This routine only produces the masses for the entire system if running in serial; to obtain system masses

in parallel running, fPrintSystemMass() would be needed.
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fPrintDomainMomentum

� Header records

int fPrintDomainMomentum()

� Function

Calculates and prints the total fluid momentum in domain.

� Dependencies

int fGetTotMomentDomain(double *momentum)

� Comments

This routine only produces the entire system momentum if running in serial; to obtain system momentum

in parallel running, fPrintSystemMomentum() would be needed.

fOutput

� Header records

int fOutput(const char* filename="lbout")

� Function

Outputs all system data in required format.

� Dependencies

int fOutputPlot3D()

int fOutputLegacyVTK()

int fOutputVTK()

� Comments

This routine is used to write output files in parallel running; a serial version of this routine, fsOutput,

also exists.

fInputParameters

� Header records

int fInputParameters(const char* filename="lbin.sys")

� Function

Reads system parameters in from lbin.sys data file.

� Dependencies

lbin.sys data file

� Arguments

filename input array of characters

� Comments

The default file name is lbin.sys: to use different file names the argument for this routine can be changed

by the user.

fReadSpaceParameter

� Header records

int fReadSpaceParameter(const char* filename="lbin.spa")
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� Function

Reads 2D or 3D space parameters from data file lbin.spa.

� Dependencies

lbin.spa data file

fReadSpace2D

fReadSpace3D

� Arguments

filename input array of characters

� Comments

The default file name is lbin.spa: this can be changed by the user if the space data file has a different

name. If system is to be equilibrated, on-grid bounce-back is initially and temporarily used in place

all boundary conditions specifying fixed values for fluid velocities/densities, solute concentrations and

temperatures.

fReadInitialState

� Header records

int fReadInitialState(const char* filename="lbin.init")

� Function

Reads initial velocities, densities, concentrations and temperatures from data file lbin.init and calculates

initial distribution functions.

� Dependencies

lbin.init data file

fReadInitialState2D

fReadInitialState3D

� Arguments

filename input array of characters

� Comments

The default file name is lbin.init: this can be changed by the user if the initial state data file has a

different name. This routine will replace the default values of all properties at specified points and should

be called after fInitializeSystem.

fSetoffSteer

� Header records

int fSetoffSteer()

� Function

Creates a file called notsteer to prevent DL MESO LBE from creating new lbin.sys and lbin.spa files

(which occurs if notsteer is missing).

� Dependencies

None

� Comments

If the user has changed the input datafiles, the code will run with new parameters.
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fCheckSteer

� Header records

int fCheckSteer()

� Function

Checks for the existence of notsteer files: if found, then reads lbin.sys and lbin.spa files.

� Dependencies

fInputParameters("lbin.sys")

fReadSpaceParameter("lbin.spa")

7.2.6 lbpIOPlot3D

fOutputGrid

� Header records

int fOutputGrid3D(const char* filename="lbout")

� Function

Outputs grid positions for system in Plot3D format.

� Dependencies

fOutputGrid2D

fOutputGrid3D

� Arguments

filename input array of characters

� Comments

The default output file name is lbout*.xyz for 3D systems and lbout*.xy for 2D systems.

fOutputQ

� Header records

int fOutputQ(const char* filename="lbout")

� Function

Outputs macroscopic mass densities and fractions for all fluids, concentrations for all solutes, temperature

and velocity (speeds along x-, y- and z-directions) at each lattice point for system in Plot3D format.

� Dependencies

fOutputQ2D

fOutputQ3D

� Arguments

filename input array of characters

� Comments

The default output file name is lbout*prop*.q, with prop substituted by dens, frac, conc or temp

for fluid densities, mass fractions, solute concentrations or temperature respectively and preceded by the

number of the fluid or solute. This can be changed by specifying an output file name when calling the

routine.
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fOutputQP

� Header records

int fOutputQP(const char* filename="lbout", int iprop=0)

� Function

Outputs macroscopic mass density of fluid iprop and velocity (speeds along x-, y- and z-directions) at

each lattice point for system in Plot3D format.

� Dependencies

fOutputQP2D

fOutputQP3D

� Arguments

filename input array of characters

iprop input integer

� Comments

The default output file name is lbout*.q and the density of fluid 0 is output by default. This can be

changed by specifying an output file name and fluid number (up to lbsy.nf−1) when calling the routine.

fOutputQCA

� Header records

int fOutputQCA(const char* filename="lbout", int iprop=0)

� Function

Outputs mass fraction of fluid iprop and speeds along x-, y- and z-directions at each lattice point for

system in Plot3D format.

� Dependencies

fOutputQCA2D

fOutputQCA3D

� Arguments

filename input array of characters

iprop input integer

� Comments

The default output file name is lbout*.q and the mass fraction of fluid 0 is output by default. These

can be changed by specifying an output file name and fluid number (up to lbsy.nf−1) when calling the

routine.

fOutputQCB

� Header records

int fOutputQCB(const char* filename="lbout", int iprop=0)

� Function

Outputs concentration of solute iprop and fluid velocity at each lattice point for system in Plot3D format.

� Dependencies

fOutputQCB2D

fOutputQCB3D
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� Arguments

filename input array of characters

iprop input integer

� Comments

The default output file name is lbout*.q and the concentration of solute 0 is output by default. These

can be changed by specifying an output file name and solute number (up to lbsy.ns−1) when calling the

routine.

fOutputQT

� Header records

int fOutputQT(const char* filename="lbout")

� Function

Outputs macroscopic temperature and fluid velocity at each lattice point for system in Plot3D format.

� Dependencies

fOutputQT2D

fOutputQT3D

� Arguments

filename input array of characters

� Comments

The default output file name is lbout*.q. This can be changed by specifying an output file name when

calling the routine.

7.2.7 lbpIOLegacyVTK

fOutputLegacyVTK

� Header records

int fOutputLegacyVTK(const char* filename="lbout")

� Function

Outputs macroscopic mass densities and fractions for all fluids, concentrations for all solutes, temperature

and velocity (speeds along x-, y- and z-directions) at each lattice point for system in Structured Grid

Legacy VTK format.

� Dependencies

fOutputLegacyVTK2D

fOutputLegacyVTK3D

� Arguments

filename input array of characters

� Comments

The default output file name is lbout*.vtk. This can be changed by specifying an output file name when

calling the routine.

fOutputLegacyVTKP

� Header records

int fOutputLegacyVTK(const char* filename="lbout", int iprop=0)
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� Function

Outputs macroscopic mass density and velocity (speeds along x-, y- and z-directions) at each lattice point

of compressible fluid iprop for system in Structured Grid Legacy VTK format.

� Dependencies

fOutputLegacyVTKP2D

fOutputLegacyVTKP3D

� Arguments

filename input array of characters

iprop input integer

� Comments

The default output file name is lbout*.vtk and the density of fluid 0 is output by default. This can be

changed by specifying an output file name and fluid number (up to lbsy.nf−1) when calling the routine.

fOutputLegacyVTKCA

� Header records

int fOutputLegacyVTKCA(const char* filename="lbout", int iprop=0)

� Function

Outputs mass fraction of fluid iprop and speeds along x-, y- and z-directions at each lattice point for

system in Structured Grid Legacy VTK format.

� Dependencies

fOutputLegacyVTKCA2D

fOutputLegacyVTKCA3D

� Arguments

filename input array of characters

iprop input integer

� Comments

The default output file name is lbout*.vtk and the mass fraction of fluid 0 is output by default. These

can be changed by specifying an output file name and fluid number (up to lbsy.nf−1) when calling the

routine.

fOutputLegacyVTKCB

� Header records

int fOutputLegacyVTKCB(const char* filename="lbout", int iprop=0)

� Function

Outputs concentration of solute iprop and fluid velocity at each lattice point for system in Structured

Grid Legacy VTK format.

� Dependencies

fOutputLegacyVTKCB2D

fOutputLegacyVTKCB3D

� Arguments

filename input array of characters

iprop input integer
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� Comments

The default output file name is lbout*.vtk and the concentration of solute 0 is output by default. These

can be changed by specifying an output file name and solute number (up to lbsy.ns−1) when calling the

routine.

fOutputLegacyVTKT

� Header records

int fOutputLegacyVTKT(const char* filename="lbout")

� Function

Outputs macroscopic temperature and fluid velocity at each lattice point for system in Structured Grid

Legacy VTK format.

� Dependencies

fOutputLegacyVTKT2D

fOutputLegacyVTKT3D

� Arguments

filename input array of characters

� Comments

The default output file name is lbout*.vtk. This can be changed by specifying an output file name when

calling the routine.

7.2.8 lbpIOVTK

fOutputVTK

� Header records

int fOutputVTK(const char* filename="lbout")

� Function

Outputs macroscopic macroscopic mass densities and fractions for all fluids, concentrations for all so-

lutes, temperature and velocity (speeds along x-, y- and z-directions) at each lattice point for system in

Structured Grid XML VTK format.

� Dependencies

fOutputVTK2D

fOutputVTK3D

� Arguments

filename input array of characters

� Comments

The default output file name is lbout*.vts. This can be changed by specifying an output file name when

calling the routine.

fOutputVTKP

� Header records

int fOutputVTKP(const char* filename="lbout", int iprop=0)
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� Function

Outputs macroscopic mass density of fluid iprop and velocity (speeds along x-, y- and z-directions) at

each lattice point for system in Structured Grid XML VTK format.

� Dependencies

fOutputVTKP2D

fOutputVTKP3D

� Arguments

filename input array of characters

iprop input integer

� Comments

The default output file name is lbout*.vts and the density of fluid 0 is output by default. This can be

changed by specifying an output file name and fluid number (up to lbsy.nf−1) when calling the routine.

fOutputVTKCA

� Header records

int fOutputVTKCA(const char* filename="lbout", int iprop=0)

� Function

Outputs mass fraction of fluid iprop and speeds along x-, y- and z-directions at each lattice point for

system in Structured Grid XML VTK format.

� Dependencies

fOutputVTKCA2D

fOutputVTKCA3D

� Arguments

filename input array of characters

iprop input integer

� Comments

The default output file name is lbout*.vts and the mass fraction of fluid 0 is output by default. These

can be changed by specifying an output file name and fluid number (up to lbsy.nf−1) when calling the

routine.

fOutputVTKCB

� Header records

int fOutputVTKCB(const char* filename="lbout", int iprop=0)

� Function

Outputs concentration of solute iprop and fluid velocity at each lattice point for system in Structured

Grid XML VTK format.

� Dependencies

fOutputVTKCB2D

fOutputVTKCB3D

� Arguments

filename input array of characters

iprop input integer
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� Comments

The default output file name is lbout*.vts and the concentration of solute 0 is output by default. These

can be changed by specifying an output file name and solute number (up to lbsy.ns−1) when calling the

routine.

fOutputVTKT

� Header records

int fOutputVTKT(const char* filename="lbout")

� Function

Outputs macroscopic temperature and fluid velocity at each lattice point for system in Structured Grid

XML VTK format.

� Dependencies

fOutputVTKT2D

fOutputVTKT3D

� Arguments

filename input array of characters

� Comments

The default output file name is lbout*.vts. This can be changed by specifying an output file name when

calling the routine.

Other output routines

Subroutines with names fsOutput* are suitable for serial running and produce output files for entire systems.

Unlike the routines listed above, these omit any domain boundary lattice points used in calculations.

Notes regarding .q, .vtk and .vts files

� lboutx.* is the .q, .vtk or .vts file at the xth saved step during serial running.

� lboutyatx.* is the .q, .vtk or .vts file at the xth saved step written by processor y during parallel

running.

� lbout files produced using multiple processors will require gathering or simultaneous plotting: see Ap-

pendix B for more details.

7.2.9 lbpBOUND

fNextStep

� Header records (three cases: 3D, 2D and coordinate)

long fNextStep(int q, int xpos, int ypos, int zpos)

long fNextStep(int q, int xpos, int ypos)

long fNextStep(int dx, int dy, int dz, long tpos)

� Function

Finds particle position at the next time step when currently at (xpos, ypos, zpos) (or tpos) and moving

along direction q or (dx, dy, dz).
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� Dependencies

fCppMod

� Arguments

q input integer

dx input integer

dy input integer

dz input integer

xpos input integer

ypos input integer

zpos input integer

tpos input long integer

fNextStep output long integer

fBounceBackF

� Header records

int fBounceBackF(long tpos)

� Function

Performs an on-grid bounce-back for the fluid distribution function at the tpos-th grid point.

� Dependencies

None

� Arguments

tpos input long integer

� Comments

This bounce-back boundary condition is carried out using f(lbopv[i]) = f(lbv[i]), i.e. populations

are exchanged with conjugate values.

fBounceBackC

� Header records

int fBounceBackC(long tpos)

� Function

Performs an on-grid bounce-back for the solute distribution function at the tpos-th grid point.

� Dependencies

None

� Arguments

tpos input long integer

� Comments

This bounce-back boundary condition is carried out using f(lbopv[i]) = f(lbv[i]).

fBounceBackT

� Header records

int fBounceBackC(long tpos)

� Function

Performs an on-grid bounce-back for the temperature distribution function at the tpos-th grid point.
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� Dependencies

None

� Arguments

tpos input long integer

� Comments

This bounce-back boundary condition is carried out using f(lbopv[i]) = f(lbv[i]).

fMidBounceBackF

� Header records

int fMidBounceBackF(long tpos)

� Function

Performs a mid-link bounce-back for the fluid distribution function at the tpos-th grid point.

� Dependencies

None

� Arguments

tpos input long integer

� Comments

This bounce-back boundary condition is carried out by exchanging post-collisional populations with con-

jugate values in neighbouring grid points.

fMidBounceBackC

� Header records

int fMidBounceBackC(long tpos)

� Function

Performs a mid-link bounce-back for the solute distribution function at the tpos-th grid point.

� Dependencies

None

� Arguments

tpos input long integer

� Comments

This bounce-back boundary condition is carried out by exchanging post-collisional populations with con-

jugate values in neighbouring grid points.

fMidBounceBackT

� Header records

int fMidBounceBackC(long tpos)

� Function

Performs a mid-link bounce-back for the temperature distribution function at the tpos-th grid point.

� Dependencies

None
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� Arguments

tpos input long integer

� Comments

This bounce-back boundary condition is carried out by exchanging post-collisional populations with con-

jugate values in neighbouring grid points.

fSiteBlankF

� Header records

int fSiteBlankF(long tpos)

� Function

Sets the fluid particle distribution function at the tpos-th grid point to zero.

� Dependencies

None

� Arguments

tpos input long integer

� Comments

This routine is used to ensure e.g. flows inside solid boundaries are negligible.

fSiteBlankC

� Header records

int fSiteBlankC(long tpos)

� Function

Sets the solute particle distribution function at the tpos-th grid point to zero.

� Dependencies

None

� Arguments

tpos input long integer

� Comments

This routine is used to ensure e.g. diffusion inside a bulk solid is negligible compared to that in a liquid.

fSiteBlankT

� Header records

int fSiteBlankT(long tpos)

� Function

Sets the temperature particle distribution function at the tpos-th grid point to zero.

� Dependencies

None

� Arguments

tpos input long integer

� Comments

This routine is used to ensure e.g. negligible heat transfer through an insulator.
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fFixedSpeedFluid

� Header records

int fFixedSpeedFluid(long tpos, int prop, double *uwall)

� Function

Calculates the particle distribution function at a fixed speed boundary.

� Dependencies

Many for different lattice schemes

� Arguments

tpos input long integer

prop input long integer

uwall output array of doubles

� Comments

Planar surface calculations are based on [73]; concave edges and corners use equilibrium boundary con-

ditions with the density on the edge and at the grid point assumed to be equal to the values at their

nearest neighbours in the bulk fluid. The array uwall is the velocity at the grid point for all fluids, which

is subsequently used for solute concentration and temperature boundary conditions.

fFixedDensityFluid

� Header records

int fFixedDensityFluid(long tpos, int prop, double *uwall)

� Function

Calculates the particle distribution function at a fixed density boundary.

� Dependencies

Many for different lattice schemes

� Arguments

tpos input long integer

prop input long integer

uwall output array of doubles

� Comments

Planar surface calculations are based on [73]; concave edges and corners assume zero speed at the boundary.

The array uwall is the velocity at the grid point for all fluids, which is subsequently used for solute

concentration and temperature boundary conditions.

fFixedSoluteConcen

� Header records

int fFixedSoluteConcen(long tpos, int prop, double *uwall)

� Function

Calculates the particle distribution function at a fixed composition boundary.

� Dependencies

Many for different lattice schemes

� Arguments

tpos input long integer

prop input long integer

uwall input array of doubles
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� Comments

Planar surface calculations are based on [28]; concave edges and corners assume zero speed at the boundary.

The fluid velocity at the lattice point, given by the array uwall, is required for this boundary condition.

fFixedTemperature

� Header records

int fFixedTemperature(long tpos, int prop, double *uwall)

� Function

Calculates the particle distribution function at a fixed temperature boundary.

� Dependencies

Many for different lattice schemes

� Arguments

tpos input long integer

prop input long integer

uwall input array of doubles

� Comments

Planar surface calculations are based on [28]; concave edges and corners assume zero speed at the boundary.

The fluid velocity at the lattice point, given by the array uwall, is required for this boundary condition.

fPostCollBoundary

� Header records

int fPostCollBoundary()

� Function

Calculates the particle distribution function at different boundaries after the collision step, prior to prop-

agation.

� Dependencies

Many for different lattice schemes

� Comments

Algorithms for other boundary conditions can be added by the user, although care should be taken as

to when they are applied in each time step: the conditions invoked in this routine are applied to post-

collisional distribution functions before propagation takes place.

fPostPropBoundary

� Header records

int fPostPropBoundary()

� Function

Calculates the particle distribution function at different boundaries after propagation, prior to the next

collision step.

� Dependencies

Many for different lattice schemes

� Comments

Algorithms for other boundary conditions can be added by the user, although care should be taken as

to when they are applied in each time step: the conditions invoked in this routine apply to distribution

functions after propagation.
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fNeighbourBoundary

� Header records

int fNeighbourBoundary()

� Function

Determines the existence of solid boundaries in neighbouring lattice points.

� Dependencies

None

� Comments

Stores results in the lbneigh array: currently only covers orthogonal directions (i.e. no diagonals). Only

needs to be called once if boundary conditions do not change during calculations.

fsPeriodic

� Header records

int fsPeriodic()

� Function

Applies periodic boundary condition for serial calculations with non-zero boundary domain widths by

copying distribution functions from edges of fluid points.

� Dependencies

fsPeriodic2D

fsPeriodic3D

� Comments

Serial equivalent of fNonBlockCommunication, essential for using the combined swap propagation routine

fPropagationCombinedSwap in serial running.

fsBoundPeriodic

� Header records

int fsBoundPeriodic()

� Function

Applies periodic boundary condition for serial calculations with non-zero boundary domain widths by

copying boundary information from edges of fluid points.

� Dependencies

fsBoundPeriodic2D

fsBoundPeriodic3D

� Comments

Serial equivalent of fBoundNonBlockCommunication, may be required for using the combined swap prop-

agation routine fPropagationCombinedSwap in serial running.

fsForcePeriodic

� Header records

int fsForcePeriodic()
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� Function

Applies periodic boundary condition for serial calculations with non-zero boundary domain widths by

copying interaction forces from edges of fluid points.

� Dependencies

fsForcePeriodic2D

fsForcePeriodic3D

� Comments

Serial equivalent of fForceNonBlockCommunication, may be required for using the combined swap propa-

gation routine fPropagationCombinedSwap in serial running for any system requiring non-constant forces.

fsIndexPeriodic

� Header records

int fsIndexPeriodic()

� Function

Applies periodic boundary condition for serial calculations with non-zero boundary domain widths by

copying phase index spatial derivatives from edges of fluid points.

� Dependencies

fsIndexPeriodic2D

fsIndexPeriodic3D

� Comments

Serial equivalent of fIndexNonBlockCommunication, may be required for using the combined swap prop-

agation routine fPropagationCombinedSwap in serial running with the Lishchuk mesophase algorithm.

7.2.10 lbpFORCE

fInteractionForceZero

� Header records

int fInteractionForceZero()

� Function

Resets all interaction forces to zero prior to calculations.

� Dependencies

None

� Comments

This routine should be called before any non-constant forces (e.g. mesophase interactions) are calculated;

not required if only using constant body forces such as gravity.

fCalcPotential ShanChen

� Header records

int fCalcPotential ShanChen()

� Function

Calculates the interaction potential φa = ρa0

(
1− exp

(
−ρ

a

ρa0

))
as suggested by the Shan-Chen model for

each species and lattice point.
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� Dependencies

fGetOneMassSite

� Comments

The Shan-Chen model is detailed in [55, 56]. Alternative mesoscale interaction potentials based on this

model can be introduced here.

fCalcInteraction ShanChen

� Header records

int fCalcInteraction ShanChen(int xpos, int ypos, int zpos)

� Function

Calculates particle interaction forces according to Shan-Chen model.

� Arguments

xpos input integer

ypos input integer

zpos input integer

� Comments

Further details can be found in [55, 56]. Similarly named routines to calculate interaction forces for

alternative mesoscale algorithms can be added by the user.

fCalcInteraction ShanChenWetting

� Header records

int fCalcInteraction ShanChenWetting(int xpos, int ypos, int zpos)

� Function

Calculates particle interaction forces according to Shan-Chen model with additional fluid-solid wetting

forces.

� Arguments

xpos input integer

ypos input integer

zpos input integer

� Comments

Further details can be found in [55, 56] and [41]. Similarly named routines to calculate interaction forces

for alternative mesoscale algorithms can be added by the user.

fInteractionForceShanChen

� Header records

int fInteractionForceShanChen()

� Function

Calculates interaction forces for all fluids based on the Shan-Chen model[55, 56].

� Dependencies

fCalcInteraction ShanChen

� Comments

The interaction potentials need to be calculated prior to calling this routine. Alternative mesoscale

interactions can be applied using similar routines.
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fInteractionForceShanChenWetting

� Header records

int fInteractionForceShanChenWetting()

� Function

Calculates interaction forces for all fluids based on the Shan-Chen model[55, 56] with additional wetting

forces[41].

� Dependencies

fCalcInteraction ShanChenWetting

� Comments

The interaction potentials need to be calculated prior to calling this routine. Alternative mesoscale

interactions can be applied using similar routines.

fCalcPhaseIndex Lishchuk

� Header records

int fCalcPhaseIndex Lishchuk()

� Function

Calculates phase indices ρNab = ρa−ρb
ρa+ρb

and first-order spatial derivatives (∇ρNab) for all unlike fluid pairs,

storing the latter for future use.

� Dependencies

fGetOneMassSite

� Comments

The Lishchuk model is detailed in [35, 20].

fCalcInteraction Lishchuk

� Header records

int fCalcInteraction Lishchuk(int xpos, int ypos, int zpos)

� Function

Calculates particle interaction forces according to Lishchuk model.

� Arguments

xpos input integer

ypos input integer

zpos input integer

� Comments

Further details can be found in [35, 20].

fInteractionForceLishchuk

� Header records

int fInteractionForceLishchuk()

� Function

Calculates interaction forces for all fluids based on the Lishchuk model[35, 20].
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� Dependencies

fCalcInteraction Lishchuk

� Comments

The phase indices need to be calculated prior to calling this routine.

fCalcForce Boussinesq

� Header records

int fCalcForce Boussinesq(long tpos, double temph, double templ)

� Function

Calculates buoyancy-driven thermal convection force according to the Boussinesq approximation.

� Dependencies

fGetOneMassSite

fGetTemperatureSite

� Arguments

tpos input long integer

temph input double precision

templ input double precision

� Comments

The buoyancy force for compressible fluids calculated by this routine is

~F a = −~gβaρ
(
T − T0

Th − Tl

)
with the reference temperature T0 = 1

2 (Th + Tl). The expression for incompressible fluids is similar with

the constant fluid density ρ0 substituted for ρ.

fConvectionForceBoussinesq

� Header records

int fConvectionForceBoussinesq(double temph, double templ)

� Function

Calculates Boussinesq thermal convection forces for all fluids based on [18].

� Dependencies

fCalcForce Boussinesq

� Arguments

temph input double precision

templ input double precision

7.2.11 lbpSUB

fWeakMemory

� Header records

inline void fWeakMemory()

� Function

Terminates calculation if system has insufficient memory.
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� Dependencies

None

� Comments

If called, will print error message:

error: cannot allocate more memory.

fMemoryAllocation

� Header records

int fMemoryAllocation()

� Function

Allocates memory for lattice Boltzmann calculations.

� Dependencies

fWeakMemory

� Comments

If memory allocation is unsuccessful, will print error message and stop calculation.

fFreeMemory

� Header records

int fFreeMemory()

� Function

Frees allocated memory.

� Dependencies

None

fSetSerialDomain

� Header records

int fSetSerialDomain()

� Function

Sets domain parameters for serial running.

� Dependencies

None

� Comments

Default routine, sets domain boundary width lbdm.bwid to zero.

fSetSerialDomainBuffer

� Header records

int fSetSerialDomainBuffer()

� Function

Sets domain parameters for serial running including additional boundary points.

� Dependencies

None
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� Comments

Similar to fSetSerialDomain but does not modify the domain boundary width from its user-specified

value.

fStartDLMESO

� Header records

int fStartDLMESO()

� Function

Announces start of DL MESO LBE run.

� Dependencies

None

� Comments

If preferred, the call to this routine can be commented out.

fFinishDLMESO

� Header records

int fFinishDLMESO()

� Function

Announces end of DL MESO LBE run, prints simulation time, efficiency measure (Millions of Lattice

Updates Per Second) and a message encouraging citations of DL MESO.

� Dependencies

None

� Comments

If preferred, the call to this routine can be commented out.

fGetModel

� Header records

int fGetModel()

� Function

Initializes vectors lbv, lbw and lbopv for lattice model.

� Dependencies

D2Q9

D3Q15

D3Q19

D3Q27

� Comments

Parameters are specified according to requested space dimension and number of discrete velocities.

fMarkBoundArea

� Header records

int fMarkBoundArea()
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� Function

Denotes where boundary areas for message passing and/or periodic boundary conditions are located.

� Dependencies

int fMarkBoundArea3D()

int fMarkBoundArea2D()

� Comments

Only used when boundary areas are used (primarily for parallel computing).

fGetEquilibriumF

� Header records

int fGetEquilibriumF(double *feq, double *v, double rho)

� Function

Calculates equilibrium distribution function for compressible fluid.

� Dependencies

None

� Arguments

feq output double pointer

v input double pointer

rho input double precision

� Comments

The equilibrium distribution function calculated here is

feq = wiρ

[
1 +

3 (~ei · ~u)

c2
+

9 (~ei · ~u)
2

2c4
− 3u2

2c2

]
which is only suitable for square lattices. Other lattice models, e.g. FHP[11], would require modification

or alternative versions of this routine.

fGetEquilibriumFIncom

� Header records

int fGetEquilibriumFIncom(double *feq, double *v, double rho, double rho0)

� Function

Calculates equilibrium distribution function for incompressible fluid.

� Dependencies

None

� Arguments

feq output double pointer

v input double pointer

rho input double precision

rho0 input double precision

� Comments

Equilibrium distribution function calculated here is

feq = wi

{
ρ+ ρ0

[
3 (ei · u)

c2
+

9 (ei · u)
2

2c4
− 3u2

2c2

]}
,

which is only suitable for square lattices. Further details can be found in [24].
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fGetEquilibriumC

� Header records

int fGetEquilibriumC(double *feq, double *v, double rho)

� Function

Calculates equilibrium distribution function for solute.

� Dependencies

None

� Arguments

feq output double pointer

v input double pointer

rho input double precision

� Comments

The equilibrium distribution function calculated here is

geq = wiC

[
1 +

3 (~ei · ~u)

c2

]
using the solute concentration C and the velocity of the bulk fluid[27]. This subroutine can be changed

for other Lattice Boltzmann models, e.g. free energy model[64].

fGetEquilibriumT

� Header records

int fGetEquilibriumT(double *feq, double *v, double tem)

� Function

Calculates equilibrium distribution function for temperature.

� Dependencies

None

� Arguments

feq output double pointer

v input double pointer

tem input double precision

� Comments

The equilibrium distribution function calculated here is

heq = wiT

[
1 +

3 (~ei · ~u)

c2

]
using the velocity of the bulk fluid[27]. This subroutine can be changed for other Lattice Boltzmann

models, e.g. [23].

fGetMomentEquilibriumF

� Header records

int fGetMomentEquilibriumF(double *meq, double *p, double rho)

� Function

Calculates equilibrium distribution function in moment space for compressible fluid.
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� Dependencies

None

� Arguments

meq output double pointer

p input double pointer

rho input double precision

� Comments

The equilibrium distribution function in moment space calculated here is

~Meq = T~feq

the exact form of which is dependent on the lattice scheme; given for D2Q9 by [33] and for D3Q15 and

D3Q19 by [8]. Parameters for calculating the square of energy (ε) and fourth-order moments (παα) can

be modified by the user in the lbpMODEL module.

fGetMomentEquilibriumFIncom

� Header records

int fGetMomentEquilibriumFIncom(double *meq, double *p, double rho, double rho0)

� Function

Calculates equilibrium distribution function in moment space for incompressible fluid.

� Dependencies

None

� Arguments

meq output double pointer

p input double pointer

rho input double precision

rho0 input double precision

� Comments

The equilibrium distribution function in moment space calculated here is

~Meq = T~feq

the exact form of which is dependent on the lattice scheme; given for D2Q9 by [33] and for D3Q15 and

D3Q19 by [8]. Parameters for calculating the square of energy (ε) and fourth-order moments (παα) can

be modified by the user in the lbpMODEL module.

fGetMomentForce

� Header records

int fGetMomentForce(double *source, double *v, double *force)

� Function

Calculates Guo-like forcing terms in moment space.

� Dependencies

None

� Arguments

meq output double pointer

v input double pointer

force input double pointer
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� Comments

The forcing terms in moment space[49] calculated here are

~S = T~w · [3 (êi − ~v) + 9 (êi · ~v) êi] · ~F

the exact form of which is dependent on the lattice scheme (given for D2Q9, D3Q15 and D3Q19).

fGetMRTCollide

� Header records

int fGetMRTCollide(double *collide, double omegashear, double omegabulk)

� Function

Calculates collision vector for Multiple-Relaxation-Time (MRT) scheme with specified fluid relaxation

frequencies.

� Dependencies

None

� Arguments

collide output double pointer

omegashear input double precision

omegabulk input double precision

� Comments

The exact form of the collision vector ~s is dependent on the lattice scheme; given for D2Q9 by [33] and

for D3Q15 and D3Q19 by [8]. Tuneable parameters for calculation stability can be modified by the user

in the lbpMODEL module.

fInitializeSystem

� Header records

int fInitializeSystem()

� Function

Initializes distribution function for lattice system.

� Dependencies

fGetEquilibriumF

fGetEquilibriumFIncom

fGetEquilibriumC

fGetEquilibriumT

� Comments

This subroutine as it stands is suitable for initializing most Lattice Boltzmann systems, although the user

may modify it if it can otherwise be faster, more stable or more suitable for a particular calculation.

fSiteFluidCollisionBGK

� Header records

int fSiteFluidCollisionBGK(double* startpos, double *sitespeed, double* bodyforce)

� Function

Calculates fluid collisions at a grid point using the Bhatnagar-Grook-Krook (BGK) model for compressible

fluids.
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� Dependencies

fGetOneMassSite

fReciprocal

fGetEquilibriumF

� Arguments

startpos input double pointer

sitespeed input array of doubles

bodyforce input double pointer

� Comments

Collisions for each fluid species are carried out using the BGK single relaxation time[4]:

(∂t + eiα∂α) fi = − 1

τf
(fi − feqi )

fSiteFluidCollisionBGKSegregation

� Header records

int fSiteFluidCollisionBGKSegregation(double* startpos, double *sitespeed, double* bodyforce,

double* phaseindex)

� Function

Calculates collisions and phase segregation for the Lishchuk algorithm at a grid point using the Bhatnagar-

Grook-Krook (BGK) model for compressible fluids.

� Dependencies

fGetAllMassSite

fGetTotMassSite

fReciprocal

fGetEquilibriumF

� Arguments

startpos input double pointer

sitespeed input array of doubles

bodyforce input double pointer

phaseindex input double pointer

� Comments

Collisions are carried out on a single ‘achromatic’ fluid using the BGK single relaxation time[4]; fluid

segregation takes place using the D’Ortona algorithm[9]:

fai
(
~x, t+

)
=
ρa

ρ
fi
(
~x, t+

)
+
∑
b 6=a

βabwi
ρaρb

ρ2
êi · n̂ab.

fSiteFluidIncomCollisionBGK

� Header records

int fSiteFluidIncomCollisionBGK(double* startpos, double *sitespeed, double* bodyforce)

� Function

Calculates collisions at a grid point using the Bhatnagar-Grook-Krook (BGK) model for incompressible

fluids.

� Dependencies

fGetOneMassSite
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fReciprocal

fGetEquilibriumFIncom

� Arguments

startpos input double pointer

sitespeed input array of doubles

bodyforce input double pointer

� Comments

Collisions for each fluid species are carried out using the BGK single relaxation time[4]:

(∂t + eiα∂α) fi = − 1

τf
(fi − feqi )

fSiteFluidIncomCollisionBGKSegregation

� Header records

int fSiteFluidIncomCollisionBGKSegregation(double* startpos, double *sitespeed, double* bodyforce,

double* phaseindex)

� Function

Calculates collisions and phase segregation for the Lishchuk algorithm at a grid point using the Bhatnagar-

Grook-Krook (BGK) model for incompressible fluids.

� Dependencies

fGetAllMassSite

fGetAllMassSite

fReciprocal

fGetEquilibriumFIncom

� Arguments

startpos input double pointer

sitespeed input array of doubles

bodyforce input double pointer

phaseindex input double pointer

� Comments

Collisions are carried out on a single ‘achromatic’ fluid using the BGK single relaxation time[4]; fluid

segregation takes place using the D’Ortona algorithm[9]:

fai
(
~x, t+

)
=
ρa

ρ
fi
(
~x, t+

)
+
∑
b 6=a

βabwi
ρaρb

ρ2
êi · n̂ab.

fSiteFluidCollisionBGKGuo

� Header records

int fSiteFluidCollisionBGKGuo(double* startpos, double *sitespeed, double* bodyforce)

� Function

Calculates collisions at a grid point using the Bhatnagar-Grook-Krook (BGK) model with the Guo forcing

term for compressible fluids.

� Dependencies

fGetOneMassSite

fReciprocal

fGetEquilibriumF
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� Arguments

startpos input double pointer

sitespeed input array of doubles

bodyforce input double pointer

� Comments

Collisions for each fluid species, solute and the thermal lattice are carried out using the BGK single

relaxation time[4], with the following Guo forcing term[19] acting on each fluid:

(∂t + eiα∂α) fi = − 1

τf
(fi − feqi ) +

(
1− 1

2τf

)
wi [3 (eiα − vα) + 9 (êi · ~v)]Fα

fSiteFluidCollisionBGKGuoSegregation

� Header records

int fSiteFluidCollisionBGKGuoSegregation(double* startpos, double *sitespeed, double* bodyforce,

double* phaseindex)

� Function

Calculates collisions and phase segregation for the Lishchuk algorithm at a grid point using the Bhatnagar-

Grook-Krook (BGK) model with the Guo forcing term for compressible fluids.

� Dependencies

fGetAllMassSite

fGetAllMassSite

fReciprocal

fGetEquilibriumF

� Arguments

startpos input double pointer

sitespeed input array of doubles

bodyforce input double pointer

phaseindex input double pointer

� Comments

Collisions are carried out on a single ‘achromatic’ fluid using the BGK single relaxation time[4], with the

Guo forcing term[19] also acting on the achromatic fluid; fluid segregation takes place using the D’Ortona

algorithm[9]:

fai
(
~x, t+

)
=
ρa

ρ
fi
(
~x, t+

)
+
∑
b 6=a

βabwi
ρaρb

ρ2
êi · n̂ab.

fSiteFluidIncomCollisionBGKGuo

� Header records

int fSiteFluidIncomCollisionBGKGuo(double* startpos, double *sitespeed, double* bodyforce)

� Function

Calculates collisions at a grid point using the Bhatnagar-Grook-Krook (BGK) model with the Guo forcing

term for incompressible fluids.

� Dependencies

fGetOneMassSite

fReciprocal

fGetEquilibriumFIncom
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� Arguments

startpos input double pointer

sitespeed input array of doubles

bodyforce input double pointer

� Comments

Collisions for each fluid species are carried out using the BGK single relaxation time[4], with the following

Guo forcing term[19] acting on each fluid:

(∂t + eiα∂α) fi = − 1

τf
(fi − feqi ) +

(
1− 1

2τf

)
wi [3 (eiα − vα) + 9 (êi · ~v)]Fα

fSiteFluidIncomCollisionBGKGuoSegregation

� Header records

int fSiteFluidIncomCollisionBGKGuoSegregation(double* startpos, double *sitespeed, double*

bodyforce, double* phaseindex)

� Function

Calculates collisions and phase segregation for the Lishchuk algorithm at a grid point using the Bhatnagar-

Grook-Krook (BGK) model with the Guo forcing term for incompressible fluids.

� Dependencies

fGetAllMassSite

fGetTotMassSite

fReciprocal

fGetEquilibriumFIncom

� Arguments

startpos input double pointer

sitespeed input array of doubles

bodyforce input double pointer

phaseindex input double pointer

� Comments

Collisions are carried out on a single ‘achromatic’ fluid using the BGK single relaxation time[4], with the

Guo forcing term[19] also acting on the achromatic fluid; fluid segregation takes place using the D’Ortona

algorithm[9]:

fai
(
~x, t+

)
=
ρa

ρ
fi
(
~x, t+

)
+
∑
b 6=a

βabwi
ρaρb

ρ2
êi · n̂ab.

fSiteFluidCollisionMRT

� Header records

int fSiteFluidCollisionMRT(double* startpos, double *sitespeed, double* bodyforce)

� Function

Calculates collisions at a grid point using Multiple-Relaxation-Time (MRT) models for compressible fluids.

� Dependencies

fGetOneMassSite

fGetSpeedSite

fGetMomentEquilibriumF

fGetMRTCollide
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� Arguments

startpos input double pointer

sitespeed input array of doubles

bodyforce input double pointer

� Comments

Collisions for each fluid species are carried out using multiple-relaxation-time (MRT) schemes[33, 8]:

(∂t + eiα∂α) fi = T−1
[
−~s
(
T~f − ~Meq

i

)]
.

fSiteFluidCollisionMRTSegregation

� Header records

int fSiteFluidCollisionMRTSegregation(double* startpos, double *sitespeed, double* bodyforce,

double* phaseindex)

� Function

Calculates collisions and phase segregation for the Lishchuk algorithm at a grid point using Multiple-

Relaxation-Time (MRT) models for compressible fluids.

� Dependencies

fGetAllMassSite

fGetTotMassSite

fReciprocal

fGetMomentEquilibriumF

fGetMRTCollide

� Arguments

startpos input double pointer

sitespeed input array of doubles

bodyforce input double pointer

phaseindex input double pointer

� Comments

Collisions are carried out on a single ‘achromatic’ fluid using multiple-relaxation-time (MRT) schemes[33,

8]; fluid segregation takes place using the D’Ortona algorithm[9]:

fai
(
~x, t+

)
=
ρa

ρ
fi
(
~x, t+

)
+
∑
b 6=a

βabwi
ρaρb

ρ2
êi · n̂ab.

fSiteFluidIncomCollisionMRT

� Header records

int fSiteFluidIncomCollisionMRT(double* startpos, double *sitespeed, double* bodyforce)

� Function

Calculates collisions at a grid point using Multiple-Relaxation-Time (MRT) models for incompressible

fluids.

� Dependencies

fGetOneMassSite

fGetMomentEquilibriumFIncom

fGetMRTCollide
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� Arguments

startpos input double pointer

sitespeed input array of doubles

bodyforce input double pointer

� Comments

Collisions for each fluid species are carried out using multiple-relaxation-time (MRT) schemes[33, 8]:

(∂t + eiα∂α) fi = T−1
[
−~s
(
T~f − ~Meq

i

)]
.

fSiteFluidIncomCollisionMRTSegregation

� Header records

int fSiteFluidIncomCollisionMRTSegregation(double* startpos, double *sitespeed, double* bodyforce,

double* phaseindex)

� Function

Calculates collisions and phase segregation for the Lishchuk algorithm at a grid point using Multiple-

Relaxation-Time (MRT) models for incompressible fluids.

� Dependencies

fGetAllMassSite

fGetTotMassSite

fReciprocal

fGetMomentEquilibriumFIncom

fGetMRTCollide

� Arguments

startpos input double pointer

sitespeed input array of doubles

bodyforce input double pointer

phaseindex input double pointer

� Comments

Collisions are carried out on a single ‘achromatic’ fluid using multiple-relaxation-time (MRT) schemes[33,

8]; fluid segregation takes place using the D’Ortona algorithm[9]:

fai
(
~x, t+

)
=
ρa

ρ
fi
(
~x, t+

)
+
∑
b 6=a

βabwi
ρaρb

ρ2
êi · n̂ab.

fSiteFluidCollisionMRTGuo

� Header records

int fSiteFluidCollisionMRTGuo(double* startpos, double *sitespeed, double* bodyforce)

� Function

Calculates collisions at a grid point using Multiple-Relaxation-Time (MRT) models coupled with Guo-like

forcing terms for compressible fluids.

� Dependencies

fGetOneMassSite

fGetMomentEquilibriumF

fGetMomentForce

fGetMRTCollide
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� Arguments

startpos input double pointer

sitespeed input array of doubles

bodyforce input double pointer

� Comments

Collisions for each fluid species are carried out using multiple-relaxation-time (MRT) schemes coupled

with Guo-like forcing terms[49]:

(∂t + eiα∂α) fi = T−1
[
−~s
(
T~f − ~Meq

i

)
+
(
I− 1

2I~s
)
~S
]

fSiteFluidCollisionMRTGuoSegregation

� Header records

int fSiteFluidCollisionMRTGuoSegregation(double* startpos, double *sitespeed, double* bodyforce,

double* phaseindex)

� Function

Calculates collisions and phase segregation for the Lishchuk algorithm at a grid point using Multiple-

Relaxation-Time (MRT) models coupled with Guo-like forcing terms for compressible fluids.

� Dependencies

fGetAllMassSite

fGetTotMassSite

fReciprocal

fGetMomentEquilibriumF

fGetMomentForce

fGetMRTCollide

� Arguments

startpos input double pointer

sitespeed input array of doubles

bodyforce input double pointer

phaseindex input double pointer

� Comments

Collisions are carried out on a single ‘achromatic’ fluid using multiple-relaxation-time (MRT) schemes

coupled with Guo-like forcing terms[49]; fluid segregation takes place using the D’Ortona algorithm[9]:

fai
(
~x, t+

)
=
ρa

ρ
fi
(
~x, t+

)
+
∑
b 6=a

βabwi
ρaρb

ρ2
êi · n̂ab.

fSiteFluidIncomCollisionMRTGuo

� Header records

int fSiteFluidIncomCollisionMRTGuo(double* startpos, double *sitespeed, double* bodyforce)

� Function

Calculates collisions at a grid point using Multiple-Relaxation-Time (MRT) models coupled with Guo-like

forcing terms for incompressible fluids.

� Dependencies

fGetOneMassSite

fGetMomentEquilibriumFIncom

fGetMomentForce

fGetMRTCollide
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� Arguments

startpos input double pointer

sitespeed input array of doubles

bodyforce input double pointer

� Comments

Collisions are carried out using multiple-relaxation-time (MRT) schemes coupled with Guo-like forcing

terms[49]:

(∂t + eiα∂α) fi = T−1
[
−~s
(
T~f − ~Meq

i

)
+
(
I− 1

2I~s
)
~S
]

fSiteFluidIncomCollisionMRTGuoSegregation

� Header records

int fSiteFluidIncomCollisionMRTGuoSegregation(double* startpos, double *sitespeed, double*

bodyforce, double* phaseindex)

� Function

Calculates collisions and phase segregation for the Lishchuk algorithm at a grid point using Multiple-

Relaxation-Time (MRT) models coupled with Guo-like forcing terms for incompressible fluids.

� Dependencies

fGetAllMassSite

fGetTotMassSite

fReciprocal

fGetMomentEquilibriumFIncom

fGetMomentForce

fGetMRTCollide

� Arguments

startpos input double pointer

sitespeed input array of doubles

bodyforce input double pointer

phaseindex input double pointer

� Comments

Collisions are carried out on a single ‘achromatic’ fluid using multiple-relaxation-time (MRT) schemes

coupled with Guo-like forcing terms[49]; fluid segregation takes place using the D’Ortona algorithm[9]:

fai
(
~x, t+

)
=
ρa

ρ
fi
(
~x, t+

)
+
∑
b 6=a

βabwi
ρaρb

ρ2
êi · n̂ab.

fSiteSoluteCollisionBGK

� Header records

int fSiteSoluteCollisionBGK(double* startpos, double *sitespeed)

� Function

Calculates solute collisions at a grid point using the Bhatnagar-Grook-Krook (BGK) model for compress-

ible fluids.

� Dependencies

fGetOneMassSite

fGetEquilibriumC
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� Arguments

startpos input double pointer

sitespeed input array of doubles

� Comments

Collisions for each solute are carried out using the BGK single relaxation time[4]:

(∂t + eiα∂α) gi = − 1

τs
(gi − geqi )

fSiteThermalCollisionBGK

� Header records

int fSiteThermalCollisionBGK(double* startpos, double *sitespeed)

� Function

Calculates thermal collisions at a grid point using the Bhatnagar-Grook-Krook (BGK) model for com-

pressible fluids.

� Dependencies

fGetOneMassSite

fGetEquilibriumT

� Arguments

startpos input double pointer

sitespeed input array of doubles

bodyforce input double pointer

� Comments

Collisions for thermal currents are carried out using the BGK single relaxation time[4]:

(∂t + eiα∂α)hi = − 1

τt
(hi − heqi )

fCollisionBGK

� Header records

int fCollisionBGK()

� Function

Collision steps for all compressible and incompressible fluids using BGK model.

� Dependencies

fSiteFluidCollisionBGK

fSiteFluidIncomCollisionBGK

fSiteSoluteCollisionBGK

fSiteThermalCollisionBGK

fGetSpeedSite

fGetSpeedIncomSite

� Comments

This routine is fundamental to Lattice Boltzmann calculations and should not be modified.

fCollisionBGKSegregation

� Header records

int fCollisionBGKSegregation()
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� Function

Collision and segregation steps for all compressible and incompressible fluids using BGK model with

Lishchuk mesophase interactions.

� Dependencies

fSiteFluidCollisionBGKSegregation

fSiteFluidIncomCollisionBGKSegregation

fSiteSoluteCollisionBGK

fSiteThermalCollisionBGK

fGetOneMassSite

fGetTotMassSite

fGetSpeedSite

fGetSpeedIncomSite

� Comments

This routine is fundamental to Lattice Boltzmann calculations and should not be modified.

fCollisionBGKGuo

� Header records

int fCollisionBGKGuo()

� Function

Collision steps for all compressible and incompressible fluids using BGK model with Guo forcing terms.

� Dependencies

fSiteFluidCollisionBGKGuo

fSiteFluidIncomCollisionBGKGuo

fSiteSoluteCollisionBGK

fSiteThermalCollisionBGK

fGetSpeedSite

fGetSpeedIncomSite

� Comments

This routine is fundamental to Lattice Boltzmann calculations and should not be modified.

fCollisionBGKGuoSegregation

� Header records

int fCollisionBGKGuoSegregation()

� Function

Collision and segregation steps for all compressible and incompressible fluids using BGK model with Guo

forcing terms and Lishchuk mesophase interactions.

� Dependencies

fSiteFluidCollisionBGKGuoSegregation

fSiteFluidIncomCollisionBGKGuoSegregation fSiteSoluteCollisionBGK

fSiteThermalCollisionBGK

fGetOneMassSite

fGetTotMassSite

fGetSpeedSite

fGetSpeedIncomSite
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� Comments

This routine is fundamental to Lattice Boltzmann calculations and should not be modified.

fCollisionMRT

� Header records

int fCollisionMRT()

� Function

Collision steps for all compressible and incompressible fluids using MRT model.

� Dependencies

fSiteFluidCollisionMRT

fSiteFluidIncomCollisionMRT

fSiteSoluteCollisionBGK

fSiteThermalCollisionBGK

fGetSpeedSite

fGetSpeedIncomSite

� Comments

This routine is fundamental to Lattice Boltzmann calculations and should not be modified.

fCollisionMRTSegregation

� Header records

int fCollisionMRTSegregation()

� Function

Collision and segregation steps for all compressible and incompressible fluids using MRT model with

Lishchuk mesophase interactions.

� Dependencies

fSiteFluidCollisionMRTSegregation

fSiteFluidIncomCollisionMRTSegregation

fSiteSoluteCollisionBGK

fSiteThermalCollisionBGK

fGetOneMassSite

fGetTotMassSite

fGetSpeedSite

fGetSpeedIncomSite

� Comments

This routine is fundamental to Lattice Boltzmann calculations and should not be modified.

fCollisionMRTGuo

� Header records

int fCollisionMRTGuo()

� Function

Collision steps for all compressible and incompressible fluids using MRT model with Guo-like forcing

terms.
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� Dependencies

fSiteFluidCollisionMRTGuo

fSiteFluidIncomCollisionMRTGuo

fSiteSoluteCollisionBGK

fSiteThermalCollisionBGK

fGetSpeedSite

fGetSpeedIncomSite

� Comments

This routine is fundamental to Lattice Boltzmann calculations and should not be modified.

fCollisionMRTGuoSegregation

� Header records

int fCollisionMRTGuoSegregation()

� Function

Collision and segregation steps for all compressible and incompressible fluids using MRT model with

Guo-like forcing terms and Lishchuk mesophase interactions.

� Dependencies

fSiteFluidCollisionMRTGuoSegregation

fSiteFluidIncomCollisionMRTGuoSegregation

fSiteSoluteCollisionBGK

fSiteThermalCollisionBGK

fGetOneMassSite

fGetTotMassSite

fGetSpeedSite

fGetSpeedIncomSite

� Comments

This routine is fundamental to Lattice Boltzmann calculations and should not be modified.

fPropagationTwoLattice

� Header records

int fPropagationTwoLattice()

� Function

Moves lattice particles (distribution functions) to neighbouring grid points using the two-lattice algorithm.

� Dependencies

None

� Comments

This routine is fundamental to Lattice Boltzmann calculations and should not be modified. This is the

least efficient propagation routine available.

fPropagationSwap

� Header records

int fPropagationSwap()

� Function

Moves lattice particles (distribution functions) to neighbouring grid points using the swap algorithm.
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� Dependencies

fSwapPair

� Comments

This routine is fundamental to Lattice Boltzmann calculations and should not be modified. Propagation

is carried out by systematic swapping of post-collisional values for the distribution function, initially at

each grid point and then between them (in two separate loops), as described by [43] and in section 5.1.

This version can be used for either serial or parallel calculations and no boundary layer is necessary: this

is the default propagation routine for serial calculations.

fPropagationCombinedSwap

� Header records

int fPropagationCombinedSwap()

� Function

Moves lattice particles (distribution functions) to neighbouring grid points using the swap algorithm.

� Dependencies

fSwapPair

� Comments

This routine is fundamental to Lattice Boltzmann calculations and should not be modified. Propagation

is carried out by systematic swapping of post-collisional values for the distribution function, initially at

each grid point and then between them (in the same loop), as described by [43] and in section 5.1. This

version can only be used for calculations with non-zero boundary layers: this is the default propagation

routine for parallel calculations.

7.2.12 lbpMPI

This package is only required for parallel running and does not require detailed knowledge for its use. Sev-

eral subroutines in this package are not described here: interested users should consult the code for further

information.

fStartMPI

� Header records

int fStartMPI(int argc, char* argv[])

� Function

Starts Message Passing Interface (MPI).

� Dependencies

None

fCloseMPI

� Header records

int fCloseMPI()

� Function

Closes Message Passing Interface (MPI).

� Dependencies

None
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fGlobalValue

� Header records (six cases)

int fGlobalValue(double *vqua, int nnum)

int fGlobalValue(int *vqua, int nnum, int *vtot)

int fGlobalValue(int *vqua, int nnum)

int fGlobalValue(long int *vqua, int nnum)

int fGlobalValue(long int *vqua, int nnum, long int *vtot)

� Function

Sums values from all processes and distributes the sum.

fGlobalProduct

� Header records (two cases)

int fGlobalProduct(double *vqua, int nnum)

int fGlobalProduct(int *vqua, int nnum)

� Function

Multiplies together values from all processors and distributes the product.

fArrangeProcessors

� Header records

int fArrangeProcessors()

� Function

Arrange processors according to system dimensions.

� Comments

Calculations are based on
lbdm.xdim

lbsy.nx
' lbdm.ydim

lbsy.ny
' lbdm.zdim

lbsy.nz

lbdm.xdim× lbdm.ydim× lbdm.zdim = lbdm.size

fDefineDomain

� Header records

int fDefineDomain()

� Function

Determines domain parameters for system calculation.

fDefineMessage

� Header records

int fDefineMessage()

� Function

Defines vector messages for system (distribution functions, boundary properties and interaction forces).
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fDefineNeighbours

� Header records

int fDefineNeighbours()

� Function

Calculates the names of neighbouring processes and the start points for sending and receiving messages.

� Comments

This subroutine must not be changed!

fNonBlockCommunication

� Header records

int fNonBlockCommunication()

� Function

Passes distribution function information for either 2D or 3D system.

fOutputInfo

� Header records

int fOutputInfo()

� Function

Outputs number of processes and lengths of integers and floats.

� Comments

This subroutine is necessary for gathering and rearranging the lbout data, and produces the files lbout.info

and lbout.ext.

fBoundNonBlockCommunication

� Header records

int fBoundNonBlockCommunication()

� Function

Passes boundary information for either 2D or 3D systems.

fForceNonBlockCommunication

� Header records

int fForceNonBlockCommunication()

� Function

Passes interaction force information for either 2D or 3D systems.

fIndexNonBlockCommunication

� Header records

int fIndexNonBlockCommunication()

� Function

Passes phase index information for either 2D or 3D systems.
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fCheckTimeMPI

� Header records

int fCheckTimeMPI()

� Function

Outputs time in seconds since initial call.

� Arguments

fCheckTimeMPI output double

� Comments

Obtains calculation time based on MPI wall clock.

fPrintSystemMass

� Header records

int fPrintSystemMass()

� Function

Calculates and prints total and individual fluid masses in entire system.

� Dependencies

fGetTotMassDomain

fGetOneMassDomain

fGlobalValue

fPrintSystemMomentum

� Header records

int fPrintSystemMomentum()

� Function

Calculates and prints the total fluid momentum in entire system.

� Dependencies

fGetTotMomentDomain

fGlobalValue
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DL MESO LBE Examples

Test cases for Lattice Boltzmann Equation simulations using DL MESO – including the required input and

sample output files – can be found in the DEMO/LBE subdirectory. They can be run using either the serial or

parallel versions of DL MESO LBE.

Images of all test cases and videos for some can be found in the Example Simulations page of the DL MESO

website: a link to it can be found at www.ccp5.ac.uk/DL MESO

8.1 2D Pressure

This is a 2D simulation of a single fluid on a 42×42 grid with fixed pressure (density) boundary conditions on the

left and right boundaries and solid walls (represented by bounce back) at the top and bottom. A visualization

with vector glyphs and a plot of fluid speed against vertical position can be seen in Figure 8.1, which show the

boundary conditions result in a laminar flow with a parabolic velocity profile.

(a) Vector plot of system
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(b) Variation of fluid speed with vertical position

Figure 8.1: Results from LBE 2D Pressure test case

8.2 2D Shear

This is a 2D simulation of a single fluid on a 42 × 42 grid with a shear boundary condition. The vector plot

in Figure 8.2 demonstrates the ability of the applied boundary conditions to generate a linear shearing Couette

flow throughout the grid, which is confirmed by the plot of horizontal velocity component as a function of

vertical position at the last time step for the simulation.
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(a) Vector plot of system
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(b) Variation of horizontal velocity with vertical posi-
tion

Figure 8.2: Results from LBE 2D Shear test case

8.3 2D CylinderFlow

This is a 2D simulation of a single fluid on a 125× 50 grid with a constant horizontal body force and a circular

obstacle of radius 12, representing channel flow past an infinitely-long cylinder. Figure 8.3 shows this flow

against a density map of the system, with solid black lines representing the solid boundaries (both walls and

the cylinder).

Figure 8.3: Density (scale: blue to red) and velocity vector plot from LBE 2D CylinderFlow test case

8.4 2D KarmanVortex

This is a 2D simulation of a single fluid on a 250× 50 grid with a constant horizontal body force and a circular

obstacle of radius 8, representing channel flow past an infinitely-long cylinder that eventually produces a von

Kármán vortex street between two solid walls. Figure 8.4 shows the flow field at the final time step: an .AVI

video file has been rendered from the calculation and can be found in the Example Simulations page of the

DL MESO website.

Figure 8.4: Velocity magnitude plot from LBE 2D KarmanVortex test case (scale: blue to red)

8.5 2D LidCavity

This is a 2D simulation of a single incompressible fluid on a 128× 128 grid with a shear boundary condition at

the top and solid walls surrounding the other edges of the system, resulting in lid-driven cavity flow. Figure 8.5
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shows the fully-developed velocity field for a Reynolds number of 100 at the final time step.

Figure 8.5: Magnitude plot of x-component velocity and velocity vector plot from LBE 2D Lidcavity test case

8.6 2D RayleighBenard

This is a 2D simulation of a single fluid undergoing natural (Rayleigh-Bénard) convection on a 102 × 51 grid.

The fluid is contained between two solid walls: the wall at the bottom of the system is maintained at a higher

temperature than that at the top. Figure 8.6 shows the fully-developed temperature field at the final time step

for a Prandtl number of 1 and a Rayleigh number of ∼ 21250.

Figure 8.6: Plot of fluid temperature for LBE 2D RayleighBenard test case (scale: blue to red)

8.7 2D DropShear

This is a 2D simulation of an initially static drop on a 150× 50 grid undergoing linear shear[21] using Lishchuk

continuum-based mesophase interactions with Guo forcing. The drop and continuous fluid are contained between

two solid walls: after an equilibration period to allow the drop shape to settle, the wall at the top of the system

is set to move horizontally while the wall at the bottom is kept stationary. Figure 8.7 shows the fluid density

(pressure) field and drop positions at time steps throughout the simulation, demonstrating traverse migration

(lift) due to linear shear, for a system with droplet Reynolds number of 0.135 and capillary number (ratio of

inertial to interfacial stresses) of 0.147. An .AVI video file has been rendered from an example calculation,

which can be found in the Example Simulations page of the DL MESO website.



122 CHAPTER 8. DL MESO LBE EXAMPLES

(a) t = 19 000

(b) t = 87 500

(c) t = 390 000

Figure 8.7: Plots of fluid density (pressure) and drop positions for LBE 2D DropShear test case

8.8 3D PhaseSeparation

This is a 3D simulation of two fluids on a 100×100×100 grid with periodic boundary conditions and Shan/Chen

pseudopotential mesoscopic interactions that cause the fluids to separate. Figure 8.8 shows the phase separation

process in a number of snapshots: two .AVI video files have been rendered from an example calculation (one

giving a 3D view of the system, the other showing a plane normal to the y-axis) which can be found in the

Example Simulations page of the DL MESO website.

(a) t = 400 (b) t = 1200 (c) t = 2000

Figure 8.8: Progressive density plots in plane normal to y-axis from LBE 3D PhaseSeparation test case (red
for fluid 0, blue for fluid 1)

8.9 3D Shear

This is a 3D simulation of a single fluid on a 40 × 30 × 25 grid with a shear boundary condition. Figure 8.9

shows a vector plot for this system, demonstrating that linear shear is generated and maintained by the moving
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boundaries in the planes normal to the y-axis, and a plot of the horizontal component of fluid velocity against

vertical position at the last time step.

(a) Vector plot of system
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(b) Plot of horizontal velocity with vertical position

Figure 8.9: Results from LBE 3D Shear test case

8.10 3D RayleighBenard

This is a 3D simulation of a single fluid undergoing natural (Rayleigh-Bénard) convection on a 80 × 40 × 80

grid. The fluid is contained between two solid walls: the wall at the bottom of the system is maintained at a

higher temperature than that at the top. Figure 8.10 shows the fully-developed temperature and convective

flow fields at the final time step for a Prandtl number of 1 and a Rayleigh number of ∼ 10000.

Figure 8.10: Plot of fluid temperature for LBE 3D RayleighBenard test case (scale: blue to red) with streamlines
depicting convective flow





Part II

Dissipative Particle Dynamics (DPD)
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Chapter 9

Dissipative Particle Dynamics: Basic Theory

9.1 Introduction

Dissipative Particle Dynamics (DPD) is an off-lattice, discrete particle method for modelling mesoscopic systems.

It has little in common with Lattice Boltzmann methods, except in its application to systems of similar length

and time scales.

The DPD method inherits its methodology from classical Molecular Dynamics (MD), particularly from Brownian

Dynamics (BD). It differs from BD, however, in an important way: it is Galilean invariant and for this reason

conserves hydrodynamic behaviour, while the BD method does not. Many systems are crucially dependent on

hydrodynamic interactions and it is essential to retain this feature in the model. DPD is particularly useful for

simulating systems on the near-molecular scale, such as polymers, biopolymers, lipids, emulsions and surfactants

– systems in which large scale structure evolves on a time scale that is too long to be modelled effectively by

MD. DPD may also be used when such systems experience shear and flow gradients.

The DPD algorithm can be summarized by the following:

� A condensed phase system may be modelled as a system of free particles interacting directly through ‘soft’

forces.

� The system is coupled to a heat bath via stochastic forces, which act on the particles in a pairwise manner.

� The particles also experience a damping or drag force, which also acts in a pairwise manner.

� Thermodynamic equilibrium is maintained through the balance of the stochastic and drag forces, i.e. the

method satisfies the fluctuation-dissipation theorem.

� At equilibrium (or steady state) the properties of the system are calculated as averages over the individual

particles, as in Molecular Dynamics.

9.2 Outline of Method

In DPD1 the system is modelled as a system of free particles, which are spherical and interact over a range

that is of the same order as their diameters. The particles can be thought of as assemblies or aggregates of

molecules, such as solvent molecules or polymers, or more simply as carriers of momentum.

1The outline of the DPD method supplied here is based on [16].
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The equations governing the time evolution in a DPD simulation resemble those of ordinary MD:

d~vi
dt

=
~Fi
mi

(9.1)

d~ri
dt

= ~vi (9.2)

in which ~ri, ~vi and ~Fi are the position, velocity and force of the ith particle, which has mass mi. The force on

the particle is a sum of pair forces:

~Fi =

N∑
j 6=i

(
~FCij + ~FDij + ~FRij

)
(9.3)

in which ~FCij , ~FDij and ~FRij are the conservative, drag and random (or stochastic) pair forces respectively. Each

represents the force exerted on particle i due to the presence of particle j. Additional pairwise forces may be

included for more complicated systems, such as those involving chains of particles bonded together[52].

The conservative interactions are usually ‘soft’ (i.e. weakly interacting) so that the particles can pass by each

other (or even through each other) relatively easily so that equilibrium is achieved quickly. A common form of

interaction potential is an inverse parabola:

V (rij) =
1

2
Aijrc

(
1− rij

rc

)2

(9.4)

where rij = |~rj − ~ri|, rc is a cutoff radius and Aij is the interaction strength. Aij may be the same for all

particle pairs or may be different for different particle types.

Equation (9.4) gives rise to a repulsive force of the form

~FCij = Aijw
C(rij)

~rij
rij

= Aij

(
1− rij

rc

)
~rij
rij

(9.5)

This is the deterministic or conservative force ~FCij exerted on particle i by particle j. Note the switching function

wC(rij) and the force are zero when rij > rc and thus the particles have an effective diameter of 1 in units of

the cutoff radius rc.

The stochastic forces experienced by the particles is again pairwise in nature and takes the form

~FRij = σijw
R (rij) ζij∆t

− 1
2
~rij
rij

(9.6)

in which ∆t is the time step and wR (rij) is a switching function which imposes a finite limit on the range of

the stochastic force. ζij is a random number with zero mean and unit variance. The constant σij is related to

the temperature, as is understood from the role of the stochastic force in representing a heat bath.

Finally the particles are subject to a drag force, which depends on the relative velocity between interacting

pairs of particles:

~FDij = −γijwD (rij) (~rij · ~vij)
~rij
r2
ij

(9.7)

where wD (rij) is once again a switching function and ~vij = ~vj − ~vi. The constant γij is the drag coefficient. It

follows from the fluctuation-dissipation theorem that for thermodynamic equilibrium to result from this method

the following relations must hold.

σ2
ij = 2γijkBT (9.8)

wD (rij) =
[
wR (rij)

]2
(9.9)

In practice the switching functions are defined through

wD (rij) =

(
1− rij

rc

)2

(rij < rc) (9.10)
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which ensures that all interactions are switched off at the range rij = rc. In many DPD simulations, the

stochastic and drag coefficients are often constant for all interactions, i.e. σij ≡ σ and γij ≡ γ, although this

assumption does not have to apply.

9.3 Equation of state and dynamic properties

The form of the conservative force determines the equation of state for a DPD fluid, which can be derived using

the virial theorem to express system pressure as follows:

p = ρkBT +
1

3V

〈∑
j>i

(~ri − ~rj) · ~FCij

〉
(9.11)

= ρkBT +
2π

3
ρ2

∫ rc

0

rA

(
1− r

rc

)
g(r)r2 dr (9.12)

where g(r) is a radial distribution function for the soft sphere model[16] and ρ is the DPD particle density. For

sufficiently large densities (ρ > 2), g(r) takes the same form and the equation of state can be well-approximated

by:

p = ρkBT + αAρ2 (9.13)

where the parameter α ≈ 0.101 ± 0.001 has units equivalent to r4
c . This expression permits the use of fluid

compressibilities to obtain conservative force parameters for bulk fluids, e.g. for water A ≈ 75kBT
ρ . Alternative

equations of state may be obtained by modifying the functional form of conservative interactions to include

localized densities (i.e. many-body DPD)[46, 66].

Transport coefficients for a DPD fluid can be derived using the expressions for the drag and stochastic forces[16,

32, 40]. The kinematic viscosity can be found to be

ν ≈ 45kBT

4πγρr3
c

+
2πγρr5

c

1575
(9.14)

while the self-diffusion coefficient is given as

D ≈ 45kBT

2πγρr3
c

. (9.15)

The ratio of these two properties, the Schmidt number (Sc = ν
D ), is therefore:

Sc ≈ 1

2
+

(2πγρr4
c )

2

70875kBT
(9.16)

and for values of the drag coefficient and density frequently used in DPD simulations, this value is of the order

of unity, which is an appropriate magnitude for gases but three orders of magnitude too small for liquids.

This property of standard DPD does not rule it out for simulations of liquid phases except when hydrodynamics

are important. It may also be argued that the self-diffusion of DPD particles might not correspond to that

of individual molecules and thus a Schmidt number of the order 103 is unnecessary for modelling liquids[47].

Alternative thermostats are available which can model systems with higher Schmidt numbers[36, 62].

9.4 Derivation of Equilibrium

The derivation of the DPD algorithm is based on the Fokker-Planck equation

∂ρ

∂t
= Lρ (9.17)

where ρ is the equilibrium distribution function and L is the evolution operator, which may be split into

conservative and dissipative parts:

L = LC + LD (9.18)
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with

LC = −
N∑
i=1

~pi
mi

∂

∂~ri
−

N∑
i 6=j

~FCij
∂

∂~pi
(9.19)

LD =

N∑
i=1

êij ·
∂

∂~pi

[
γwD (êij · ~vij) +

σ2

2

{
wR (rij)

}2
êij ·

{
∂

∂~pi
− ∂

∂~pj

}]
(9.20)

where êij =
~rij
rij

.

When α = γ = 0 then Equation (9.17) becomes

∂ρ

∂t
= LCρ (9.21)

for which the equilibrium solution is evidently

ρeq =
1

Z
exp

 1

kBT

 N∑
i=1

p2
i

2mi
+

1

2

N∑
j 6=i

φ (rij)

 (9.22)

which is, of course, the Boltzmann distribution function for an equilibrium system. Thus it is apparent that for

the simulation based on Equation (9.17) to maintain the same distribution function, the terms in the operator

LD of Equation (9.20) must sum to zero. It follows that the conditions given in Equations (9.8) and (9.9) must

apply.

9.5 Summary of Dissipative Particle Dynamics

DPD is a simple method. All that is required is a system of spherical particles enclosed in a periodic box

undergoing time evolution as a result of the above forces. In implementation it differs very little from Molecular

Dynamics. It should be noted that all computed interactions are pairwise, which means that the principle of the

conservation of momentum in the system, or ‘Galilean invariance’, is preserved. The conservation of momentum

is required for the preservation of hydrodynamic forces.
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DL MESO DPD Basic Definition

10.1 Data structure

10.1.1 Storage of running information

DL MESO DPD contains storage for information on the system being modelled, the domain and neighbour

information for parallel running. The parameters for these aspects of calculations can be found in Tables 10.1,

10.2 and 10.3.

It should be noted for the parameters in Table 10.1 that the fundamental units for the simulation are those of

mass [M ], length [L] and energy [E]: the DPD unit of time is equivalent to [L]
√

[M ]
[E] while temperature (in the

form kBT ) is defined as two-thirds of the kinetic energy per particle.

10.1.2 Storage of particle and bond properties

The total number of particles in a system is nsyst, of which nusyst particles are ‘loose’, i.e. not bonded

to other particles, and nfsyst are ‘frozen’, i.e. remain fixed in position but still interact with other particles.

DL MESO DPD divides up the particles and total system volume (volm) between the processing units available.

At any given time each process holds nbeads particles, including nfbeads frozen particles. Each process also

has nbonds bonds, nangles bond angles and ndiheds bond dihedrals to deal with. If bonds are dealt with

locally, only the bonds associated with the subdomain are calculated by each process; otherwise all processes

hold information on all bonds.

The Cartesian coordinates, velocities and forces for the particles are each held in sets of three double precision

arrays for x-, y- and z-components. Particle positions relative to the volume modelled by the individual processor

— thus not absolute positions unless the serial version of DL MESO DPD is used — are held in arrays xxx(i),

yyy(i) and zzz(i) (for particle i). Particle velocities are held in vxx(i), vyy(i) and vzz(i). Three sets

of arrays for the net forces acting on the particles are available: fxx(i), fyy(i) and fzz(i) for forces that

remain constant over each time step, fvx(i), fvy(i) and fvz(i) for forces that may vary during the time step

(e.g. drag forces for DPD Velocity Verlet integration, thermostatting force for Stoyanov-Groot thermostat),

and fcfx(i), fcfy(i) and fcfz(i) for corrections to forces between frozen particles (particularly long-range

electrostatic forces).

The particles modelled by a particular processor have both local and global identity numbers, the latter of which

are stored in the integer array lab(i). DL MESO DPD assigns the lowest local identity numbers (i.e. between

1 and nfbeads) to the frozen particles in each processor’s subdomain to avoid having to search for and skip

over frozen particles during force integration steps, while the highest global identity numbers (from nusyst+1

to nsyst) are assigned to particles belonging to molecules. When particles are copied into boundary halos,

the processor numbers and local particle numbers in their original processors are stored in the integer arrays
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Table 10.1: System information

parameter meaning
text name of calculation
nsyst total number of particles
nusyst total number of unbonded particles
nfsyst total number of frozen particles
nspe number of particle species
nmoldef number of molecule types
temp specified system temperature (kBT )
prszero specified system pressure (P0)
rcut interaction cutoff radius (rc)
rmbcut many-body interaction cutoff radius (rd)
relec short-range electrostatic interaction cutoff radius (re)
srfzcut surface repulsion cutoff distance (zc)
rhalo size of boundary halo
nrun number of calculation timesteps
nseql number of equilibration timesteps
tstep duration of calculation timestep (∆t)
timjob maximum time available to run calculation
tclose time required to shut down calculation
kres calculation restart parameter
nsbpo interval for printing data to OUTPUT file
ltraj switch for saving trajectory data to HISTORY file(s)
straj starting timestep saving trajectory data to HISTORY file(s)
ntraj interval for saving trajectory data to HISTORY file(s)
nstk size of statistical data stack
ltemp switch for temperature scaling before equilibration
nsbts interval for temperature scaling
lcorr switch for saving statistical data to CORREL file
iscorr interval for saving statistical data to CORREL file
itype integrator/thermostat selection
btype barostat selection
etype electrostatic algorithm selection
srftype surface boundary selection
lbond switch for modelling bonds between particles
langle switch for modelling bond angles
ldihed switch for modelling bond dihedrals
lgbnd switch for globally storing all bond data
lisoprs switch for isotropic variation of system dimensions with pressure

lmp(i) and loc(i) respectively. Numbers representing species and molecule types are stored in arrays ltp(i)

and ltm(i), which are used to assign particle masses and the names of particles and molecules respectively to

the arrays weight(i), atmnam(i) and molnam(i).

All of these arrays are allocatable and their sizes set equal to maxdim, which is an estimate of the maximum

possible number of particles likely to be stored in each processor based on the total number of particles, the

numbers of available link cells and the number of processors available. Since the calculation for this parameter

makes the assumption that the particle density is constant throughout the system, possible variations in density

can be specified by the user and taken into account when calculating maxdim. A similar parameter, maxpair,

is also calculated to determine the maximum possible number of particle pair interactions and used to define

the maximum sizes of arrays for storing information for thermostats that correct particle velocities after force

integration, i.e. Lowe-Andersen, Peters and Stoyanov-Groot.

Bonded particles are listed by global identity numbers in the integer array bndtbl(i,j) for bond i, with

j=1 representing the first particle in the pair, j=2 for the second and j=3 giving the user-defined bond type.

The location of the first particle in each bond pair determines the processing unit which holds this data; thus

movement of this reference particle across processes also causes the bond list entry to be transferred with it.
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Table 10.2: Domain information

parameter meaning
idnode name of the processor
nodes number of processors
idx x-coordinate of the processor
idy y-coordinate of the processor
idz z-coordinate of the processor
npx number of processors along x-axis
npy number of processors along y-axis
npz number of processors along z-axis
volm volume of system
dimx size of system in x-dimension
dimy size of system in y-dimension
dimz size of system in z-dimension
sidex size of domain in x-dimension
sidey size of domain in y-dimension
sidez size of domain in z-dimension
delx absolute x-coordinate of domain origin
dely absolute y-coordinate of domain origin
delz absolute z-coordinate of domain origin
nlx number of link cells in domain along x-axis
nly number of link cells in domain along y-axis
nlz number of link cells in domain along z-axis
wdthx link cell size in x-dimension
wdthy link cell size in y-dimension
wdthz link cell size in z-dimension
nlewx number of electrostatic link cells in domain along x-axis
nlewy number of electrostatic link cells in domain along y-axis
nlewz number of electrostatic link cells in domain along z-axis
wdthewx electrostatic link cell size in x-dimension
wdthewy electrostatic link cell size in y-dimension
wdthewz electrostatic link cell size in z-dimension

Table 10.3: Neighbour information

parameter meaning
map(k) processor name of neighbour k
k = 1 left neighbour
k = 2 right neighbour
k = 3 lower neighbour
k = 4 upper neighbour
k = 5 back neighbour
k = 6 front neighbour

Bond angles and bond dihedrals are stored in similar tables, angtbl(i,j) (particles j from 1 to 3, angle type

at j=4) and dhdtbl(i,j) (particles j from 1 to 4, dihedral type at j=5) respectively, using the second particle

in each triple or quadruple as the reference particle.

Prior to force calculations, a list of bonded particles in each process domain and – if calculating bond forces

locally – the surrounding boundary halo is constructed, lblclst(i,j), to allow DL MESO DPD to find the

local number for a particle (j=2) from its global number (j=1) using a binary search. This list may include

duplicates for the same global particle number; the local numbers giving the shortest distance between pairs of

particles are selected and used.
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10.2 The Parameters and Their Functions

Table 10.4 lists all the globally used parameters defined in DL MESO DPD, as given in the constants,

variables and numeric container modules. Because DL MESO is an ongoing project and new parame-

ters might be added to the package in the future, it is strongly recommended that users of DL MESO check the

names of any self-defined variables whenever the package is updated to reduce the possibility of duplications

causing unexpected errors.

The notation column in Table 10.4 gives the restrictions applicable on the parameters. ‘A’ indicates an array

of data, followed by the number of elements in the array. For example, ‘A maxdim’ means the parameter is

actually an array with maxdim elements (numbered from 1 to maxdim). ‘≥ 1’ means the number must be greater

or equal to one, while for a Boolean parameter ‘T or F’ means its value can either be .true. or .false.. An

asterisk in the data type for the array indicates that it is allocatable and defined during the run.
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Table 10.4: DL MESO DPD Parameters

function parameter data type notation

kind parameter for double precision numbers dp integer

kind parameter for long integers li integer

maximum word length mxword integer

I/O channel for reading input files nread integer

I/O channel for writing OUTPUT file nwrite integer

I/O channel for reading export* files nrtin integer

I/O channel for writing export* files nrtout integer

I/O channel for writing CORREL file nsave integer

I/O channel for writing HISTORY* files nhist integer

number of bytes per real number lword1 integer

number of bytes per double precision number lword2 integer

value of π pi real(KIND=dp)

value of
√
π rtpi real(KIND=dp)

conversion factor from degrees to radians degrad real(KIND=dp)

conversion factor from radians to degrees raddeg real(KIND=dp)

conversion factor from energy to temperature fkt real(KIND=dp)

square root of 12 (for random force calculations) rt12 real(KIND=dp)

convergence error for Langevin barostat langeps real(KIND=dp)

name of processing unit idnode integer

number of processing units nodes integer

filename for restart files exportname character(10)

switch for temperature scaling ltemp logical T or F

switch for reading CONFIG file lconfig logical T or F

switch for writing CORREL file lcorr logical T or F

switch for writing HISTORY* files ltraj logical T or F

switch for modelling bonds lbond logical T or F

switch for modelling bond angles langle logical T or F

switch for modelling bond dihedrals ldihed logical T or F

switch for global holding of bond information lgbnd logical T or F

switch for defining variable force arrays lvarfc logical T or F

switch for isotropic variations of volume with pressure lisoprs logical T or F

switch for ignoring global bead numbers in CONFIG file ligindex logical T or F

duplications of CONFIG file in x direction nfoldx integer

duplications of CONFIG file in y direction nfoldy integer

duplications of CONFIG file in z direction nfoldz integer

total number of duplications of CONFIG file nfold integer

data key for CONFIG file levcfg integer

periodic boundary key for CONFIG file imcon integer

printout selection for OUTPUT file outsel integer

maximum number of particles maxdim integer

maximum number of pairwise interactions maxpair integer

maximum message buffer size maxbuf integer

maximum number of particles per molecule mxmolsize integer

maximum number of bonds per molecule mxbond integer

maximum number of angles per molecule mxangles integer

maximum number of dihedrals per molecule mxdiheds integer

maximum number of interaction parameters mxprm integer

density variation for non-uniform system distributions dvar real(KIND=dp)

name of DL MESO DPD calculation text character(80)

number of time steps for calculation nrun integer

interval for writing OUTPUT file nsbpo integer ≥ 1

interval for writing CORREL file iscorr integer

starting time step for writing HISTORY* files straj integer

interval for writing HISTORY* files ntraj integer

restart file (export*) creation interval ndump integer

temperature scaling interval nsbts integer

number of equilibration time steps nseql integer

calculation restart parameter kres integer

number of species nspe integer ≥ 1

number of potentials npot integer ≥ 1

number of defined molecule types nmoldef integer

number of defined bond types nbonddef integer ≤ mxbonddef

number of defined bond angle types nangdef integer ≤ mxbonddef

number of defined bond dihedral types ndhddef integer ≤ mxbonddef

size of statistical data stack nstk integer ≥ 1

total number of particles in system nsyst integer

total number of unbonded particles in system nusyst integer

total number of frozen particles in system nfsyst integer

total number of particles per unit cell nsystcell integer

total number of unbonded particles per unit cell nusystcell integer

total number of frozen particles per unit cell nfsystcell integer

total number of molecules per unit cell nummol integer

total number of bonds per unit cell numbond integer

total number of bond angles per unit cell numang integer

total number of bond dihedrals per unit cell numdhd integer

time step number nstep integer

force calculation time accumulator timfrc real(KIND=dp)

step time accumulator timstp real(KIND=dp)

specified system temperature (kBT ) temp real(KIND=dp)

size of time step (∆t) tstep real(KIND=dp)

halo boundary size rhalo real(KIND=dp)

interaction cutoff radius (rc) rcut real(KIND=dp) > 0

square of interaction cutoff radius rct2 real(KIND=dp) > 0
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Table 10.4: DL MESO DPD Parameters (continued)

function parameter data type notation

many-body DPD cutoff radius (rd) rmbcut real(KIND=dp)

square of many-body DPD cutoff radius rmbct2 real(KIND=dp)

short-range electrostatic cutoff (re) relec real(KIND=dp)

square of electrostatic cutoff rel2 real(KIND=dp)

surface cutoff length (zc) srfzcut real(KIND=dp)

square of surface cutoff length srfzct2 real(KIND=dp)

maximum calculation time timjob real(KIND=dp)

calculation close time tclose real(KIND=dp)

system volume volm real(KIND=dp)

size of system in x-dimension dimx real(KIND=dp)

size of system in y-dimension dimy real(KIND=dp)

size of system in z-dimension dimz real(KIND=dp)

size of unit cell in x-dimension dimxcell real(KIND=dp)

size of unit cell in y-dimension dimycell real(KIND=dp)

size of unit cell in z-dimension dimzcell real(KIND=dp)

number of domain cells in x npx integer ≥ 1

number of domain cells in y npy integer ≥ 1

number of domain cells in z npz integer ≥ 1

list of neighbouring processes map integer A 6

x position of domain cell idx integer

y position of domain cell idy integer

z position of domain cell idz integer

position of domain cell origin in system volume (x dimension) delx real(KIND=dp)

position of domain cell origin in system volume (y dimension) dely real(KIND=dp)

position of domain cell origin in system volume (z dimension) delz real(KIND=dp)

domain cell length in x-direction sidex real(KIND=dp)

domain cell length in y-direction sidey real(KIND=dp)

domain cell length in z-direction sidez real(KIND=dp)

number of particles in domain cell nbeads integer

number of frozen particles in domain cell nfbeads integer

number of link cells in domain cell (x dimension) nlx integer

number of link cells in domain cell (y dimension) nly integer

number of link cells in domain cell (z dimension) nlz integer

number of link cells in domain cell and boundary halo (x dimension) nlx2 integer

number of link cells in domain cell and boundary halo (y dimension) nly2 integer

number of link cells in domain cell and boundary halo (z dimension) nlz2 integer

link cell length in x-direction wdthx real(KIND=dp)

link cell length in y-direction wdthy real(KIND=dp)

link cell length in z-direction wdthz real(KIND=dp)

number of link cells for electrostatics in domain cell (x dimension) nlewx integer

number of link cells for electrostatics in domain cell (y dimension) nlewy integer

number of link cells for electrostatics in domain cell (z dimension) nlewz integer

number of link cells for electrostatics in domain cell and boundary halo (x dimension) nlewx2 integer

number of link cells for electrostatics in domain cell and boundary halo (y dimension) nlewy2 integer

number of link cells for electrostatics in domain cell and boundary halo (z dimension) nlewz2 integer

electrostatic link cell length in x-direction wdthewx real(KIND=dp)

electrostatic link cell length in y-direction wdthewy real(KIND=dp)

electrostatic link cell length in z-direction wdthewz real(KIND=dp)

species name namspe character(LEN=8)* A nspe

potential interaction type ktype integer* A npot

species particle mass amass real(KIND=dp)* A nspe

species particle charge chge real(KIND=dp)* A nspe

species frozen status lfrzn integer* A nspe

interaction parameter storage vvv real(KIND=dp)* A mxprm,npot

Lennard-Jones long-range potential correction clr real(KIND=dp) A 2

charged frozen particle correction to system stress tensor strcfz real(KIND=dp) A 9

charged frozen particle correction to system virial vrlcfz real(KIND=dp) A 3

charged frozen particle correction to system potential energy potcfz real(KIND=dp)

integrator/thermostat type itype integer

dissipative coefficient (γ)/collision frequency (Γ) gamma real(KIND=dp)* A npot

random force parameter (σ)1/probability of velocity rescaling (Γ∆t) sigma real(KIND=dp)* A npot

Stoyanov-Groot Nosé-Hoover coupling parameter (α) alphasg real(KIND=dp)

thermostat pair list2: particle i pairlsti integer* A maxpair

thermostat pair list: particle j pairlstj integer* A maxpair

thermostat pair list: Maxwell distributed velocity (v◦ij) veleq real(KIND=dp)* A maxpair

number of particle pairs in thermostat pair list npair integer

barostat type btype integer

barostat target pressure (P0) prszero real(KIND=dp)

barostat parameter a abaro real(KIND=dp)

barostat parameter b bbaro real(KIND=dp)

x component of piston velocity upx real(KIND=dp)

y component of piston velocity upy real(KIND=dp)

z component of piston velocity upz real(KIND=dp)

x component of piston velocity at previous timestep upx1 real(KIND=dp)

y component of piston velocity at previous timestep upy1 real(KIND=dp)

z component of piston velocity at previous timestep upz1 real(KIND=dp)

piston mass (Wg) psmass real(KIND=dp)

x component of piston force fpx real(KIND=dp)

y component of piston force fpy real(KIND=dp)

z component of piston force fpz real(KIND=dp)

1This incorporates the time step for Velocity Verlet integration and is thus equal to
√

2γkBT
∆t

.
2The pair list arrays are not allocated for the DPD thermostat (MD-VV or DPD-VV).
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Table 10.4: DL MESO DPD Parameters (continued)

function parameter data type notation

instantaneous virial ivrl real(KIND=dp) A 3

Langevin random force parameter (σp) sigmalang real(KIND=dp)

electrostatic algorithm type etype integer

electrostatic coupling parameter (Γ) gammaelec real(KIND=dp)

total system charge (
∑
i qi) qchg real(KIND=dp)

Ewald real-space convergence parameter (α) alphaew real(KIND=dp)

reciprocal of real-space convergence parameter ralphaew real(KIND=dp)

maximum reciprocal vector size in x dimension (kmax1 ) kmax1 integer ≥ 1

maximum reciprocal vector size in y dimension (kmax2 ) kmax2 integer ≥ 1

maximum reciprocal vector size in z dimension (kmax3 ) kmax3 integer ≥ 1

Ewald self-interaction correction engsic real(KIND=dp)

charged system correction qfixv real(KIND=dp)

Slater charge smearing coefficient (β) betaew real(KIND=dp)

bond interaction parameter a aabond real(KIND=dp)* A nbonddef

bond interaction parameter b bbbond real(KIND=dp)* A nbonddef

bond interaction parameter c ccbond real(KIND=dp)* A nbonddef

bond interaction parameter d ddbond real(KIND=dp)* A nbonddef

angle interaction parameter a aaang real(KIND=dp)* A nbonddef

angle interaction parameter b bbang real(KIND=dp)* A nbonddef

angle interaction parameter c ccang real(KIND=dp)* A nbonddef

angle interaction parameter d ddang real(KIND=dp)* A nbonddef

dihedral interaction parameter a aadhd real(KIND=dp)* A nbonddef

dihedral interaction parameter b bbdhd real(KIND=dp)* A nbonddef

dihedral interaction parameter c ccdhd real(KIND=dp)* A nbonddef

dihedral interaction parameter d dddhd real(KIND=dp)* A nbonddef

bond types bdtype integer* A nbonddef

bond angle types angtype integer* A nbonddef

bond dihedral types dhdtype integer* A nbonddef

molecule isomer switch moliso logical* A nbonddef

bond table bndtbl integer* A numbond,3

bond angle table angtbl integer* A numang,4

bond dihedral table dhdtbl integer* A numdhd,5

global/local particle number list lblclst integer* A maxdim,2

number of bonds in table nbonds integer

number of bond angles in table nangles integer

number of bond dihedrals in table ndiheds integer

number of entries in global/local particle number list nlist integer

species population of unbonded particles nspec integer* A nspe

species population of bonded particles nspecmol integer A mxspe

molecule type population nmol integer* A nmoldef

bead numbers in molecule types nbdmol integer A mxmoldef

molecule name nammol character(8)* A 0:nmoldef

species number for molecule insertion mlstrtspe integer* A nmoldef,mxmolsize

x coordinate for molecule insertion mlstrtxxx real(KIND=dp)* A nmoldef,mxmolsize

y coordinate for molecule insertion mlstrtyyy real(KIND=dp)* A nmoldef,mxmolsize

z coordinate for molecule insertion mlstrtzzz real(KIND=dp)* A nmoldef,mxmolsize

cube size for molecule insertion cbsize real(KIND=dp)* A nmoldef

number of bonds for molecule type nbond integer* A nmoldef

number of bond angles for molecule type nangle integer* A nmoldef

number of bond dihedrals for molecule type ndihed integer* A nmoldef

bond table storage for molecule insertion bdinp1 integer* A nmoldef,mxbonds

bond table storage for molecule insertion bdinp2 integer* A nmoldef,mxbonds

bond table storage for molecule insertion bdinp3 integer* A nmoldef,mxbonds

angle table storage for molecule insertion anginp1 integer* A nmoldef,mxbonds

angle table storage for molecule insertion anginp2 integer* A nmoldef,mxbonds

angle table storage for molecule insertion anginp3 integer* A nmoldef,mxbonds

angle table storage for molecule insertion anginp4 integer* A nmoldef,mxbonds

dihedral table storage for molecule insertion dhdinp1 integer* A nmoldef,mxbonds

dihedral table storage for molecule insertion dhdinp2 integer* A nmoldef,mxbonds

dihedral table storage for molecule insertion dhdinp3 integer* A nmoldef,mxbonds

dihedral table storage for molecule insertion dhdinp4 integer* A nmoldef,mxbonds

dihedral table storage for molecule insertion dhdinp5 integer* A nmoldef,mxbonds

localized densities rhomb real(KIND=dp)* A maxdim, nspe

surface type srftype integer

surface switch for boundary normal to x-axis srfx integer

surface switch for boundary normal to y-axis srfy integer

surface switch for boundary normal to z-axis srfz integer

switches for surfaces in current node srflgc logical A 6

surface repulsion parameters Awall aasrf real(KIND=dp)* A nspe

species of frozen beads for surface frzwspe integer

number of frozen beads in x dimension for wall normal to x-axis npxfwx integer

number of frozen beads in y dimension for wall normal to x-axis npxfwy integer

number of frozen beads in z dimension for wall normal to x-axis npxfwz integer

number of frozen beads in x dimension for wall normal to y-axis npyfwx integer

number of frozen beads in y dimension for wall normal to y-axis npyfwy integer

number of frozen beads in z dimension for wall normal to y-axis npyfwz integer

number of frozen beads in x dimension for wall normal to z-axis npzfwx integer

number of frozen beads in y dimension for wall normal to z-axis npzfwy integer

number of frozen beads in z dimension for wall normal to z-axis npzfwz integer

frozen bead density of walls frzwdens real(KIND=dp)

width of frozen bead wall normal to x-axis frzwxwid real(KIND=dp)

width of frozen bead wall normal to y-axis frzwywid real(KIND=dp)

width of frozen bead wall normal to z-axis frzwzwid real(KIND=dp)

x component of external body acceleration per particle bdfrcx real(KIND=dp)
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Table 10.4: DL MESO DPD Parameters (continued)

function parameter data type notation

y component of external body acceleration per particle bdfrcy real(KIND=dp)

z component of external body acceleration per particle bdfrcz real(KIND=dp)

x component of Lees-Edwards shearing velocity shrvx real(KIND=dp)

y component of Lees-Edwards shearing velocity shrvy real(KIND=dp)

z component of Lees-Edwards shearing velocity shrvz real(KIND=dp)

x component of Lees-Edwards shearing displacement shrdx real(KIND=dp)

y component of Lees-Edwards shearing displacement shrdy real(KIND=dp)

z component of Lees-Edwards shearing displacement shrdz real(KIND=dp)

force x-component on particle fxx real(KIND=dp)* A maxdim

force y-component on particle fyy real(KIND=dp)* A maxdim

force z-component on particle fzz real(KIND=dp)* A maxdim

variable force x-component on particle fvx3 real(KIND=dp)* A maxdim

variable force y-component on particle fvy real(KIND=dp)* A maxdim

variable force z-component on particle fvz real(KIND=dp)* A maxdim

corrective force x-component on charged frozen particle fcfx real(KIND=dp)* A maxdim

corrective force y-component on charged frozen particle fcfy real(KIND=dp)* A maxdim

corrective force z-component on charged frozen particle fcfz real(KIND=dp)* A maxdim

velocity x-component of particle vxx real(KIND=dp)* A maxdim

velocity y-component of particle vyy real(KIND=dp)* A maxdim

velocity z-component of particle vzz real(KIND=dp)* A maxdim

Cartesian coordinate x for particle xxx real(KIND=dp)* A maxdim

Cartesian coordinate y for particle yyy real(KIND=dp)* A maxdim

Cartesian coordinate z for particle zzz real(KIND=dp)* A maxdim

particle global identity number lab integer* A maxdim

particle species number ltp integer* A maxdim

particle molecule type number ltm integer* A maxdim

particle link cell population number lct integer* A maxdim

particle link cell number link integer* A maxdim

particle local domain cell identity number loc integer* A maxdim

particle domain cell number lmp integer* A maxdim

particle molecule type number ltm integer* A maxdim

species name for particle atmnam character(8)* A maxdim

molecule name for particle molnam character(8)* A maxdim

particle mass weight real(KIND=dp)* A maxdim

potential energy accumulator pe real(KIND=dp)

virial accumulator vir real(KIND=dp)

stress tensor accumulator stress real(KIND=dp) A 9

kinetic energy accumulator tke real(KIND=dp)

bond potential energy accumulator be real(KIND=dp)

angle potential energy accumulator ae real(KIND=dp)

dihedral potential energy accumulator de real(KIND=dp)

electrostatic potential energy accumulator ee real(KIND=dp)

bond length accumulator bdlng real(KIND=dp)

bond length maximum value bdlmax real(KIND=dp)

bond length minimum value bdlmin real(KIND=dp)

bond angle accumulator bdang real(KIND=dp)

bond dihedral accumulator bddhd real(KIND=dp)

average system potential energy avepe real(KIND=dp)

average system virial avevir real(KIND=dp)

average system kinetic energy avetke real(KIND=dp)

average system total energy avete real(KIND=dp)

average system pressure aveprs real(KIND=dp)

average system volume avevlm real(KIND=dp)

average system temperature avettp real(KIND=dp)

average system bond potential energy avebe real(KIND=dp)

average system angle potential energy aveae real(KIND=dp)

average system dihedral potential energy avede real(KIND=dp)

average system electrostatic potential energy aveee real(KIND=dp)

system potential energy fluctuation flcpe real(KIND=dp)

system virial fluctuation flcvir real(KIND=dp)

system kinetic energy fluctuation flcke real(KIND=dp)

system total energy fluctuation flcte real(KIND=dp)

system pressure fluctuation flcprs real(KIND=dp)

system volume fluctuation flcvlm real(KIND=dp)

system temperature fluctuation flcttp real(KIND=dp)

system bond potential energy fluctuation flcbe real(KIND=dp)

system angle potential energy fluctuation flcae real(KIND=dp)

system dihedral potential energy fluctuation flcde real(KIND=dp)

system electrostatic potential energy fluctuation flcee real(KIND=dp)

system potential energy accumulator zumpe real(KIND=dp)

system virial accumulator zumvir real(KIND=dp)

system kinetic energy accumulator zumtke real(KIND=dp)

system volume accumulator zumvlm real(KIND=dp)

system bond potential energy accumulator zumbe real(KIND=dp)

system angle potential energy accumulator zumae real(KIND=dp)

system dihedral potential energy accumulator zumde real(KIND=dp)

system electrostatic potential energy accumulator zumee real(KIND=dp)

system potential energy at current step stppe real(KIND=dp)

system virial at current step stpvir real(KIND=dp)

system kinetic energy at current step stptke real(KIND=dp)

system total energy at current step stptke real(KIND=dp)

3These are only allocated if variable forces are required for e.g. DPD Velocity Verlet integration and Stoyanov-Groot thermostat.
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Table 10.4: DL MESO DPD Parameters (continued)

function parameter data type notation

system pressure at current step stpprs real(KIND=dp)

system volume at current step stpvlm real(KIND=dp)

system temperature at current step stpttp real(KIND=dp)

system bond potential energy at current step stpbe real(KIND=dp)

system angle potential energy at current step stpae real(KIND=dp)

system dihedral energy at current step stpde real(KIND=dp)

system electrostatic energy at current step stpee real(KIND=dp)

system mean bond length at current step stpbdl real(KIND=dp)

system maximum bond length at current step stpbdmx real(KIND=dp)

system minimum bond length at current step stpbdmn real(KIND=dp)

system mean bond angle at current step stpang real(KIND=dp)

system mean bond dihedral at current step stpdhd real(KIND=dp)

rolling average system potential energy ravpe real(KIND=dp)

rolling average system virial ravvir real(KIND=dp)

rolling average system kinetic energy ravtke real(KIND=dp)

rolling average system total energy ravte real(KIND=dp)

rolling average system pressure ravprs real(KIND=dp)

rolling average system volume ravvlm real(KIND=dp)

rolling average system temperature ravttp real(KIND=dp)

rolling average system bond potential energy ravbe real(KIND=dp)

rolling average system angle potential energy ravae real(KIND=dp)

rolling average system dihedral potential energy ravde real(KIND=dp)

rolling average system electrostatic potential energy ravee real(KIND=dp)

stage number for data stack nav integer

data stack for potential energy stkpe real(KIND=dp)* A nstk

data stack for virial stkvir real(KIND=dp)* A nstk

data stack for kinetic energy stktke real(KIND=dp)* A nstk

data stack for volume stkvlm real(KIND=dp)* A nstk

data stack for bond potential energy stkbe real(KIND=dp)* A nstk

data stack for angle potential energy stkae real(KIND=dp)* A nstk

data stack for dihedral potential energy stkde real(KIND=dp)* A nstk

data stack for electrostatic potential energy stkee real(KIND=dp)* A nstk

duni random number generator state uni integer A 102

mtrnd random number generator state mt integer A 0:624





Chapter 11

DL MESO DPD Features

11.1 Domain decomposition and linked-list cell calculations

The Domain Decomposition (DD) strategy is one of several ways to parallelize particle-based simulations[57].

Its basis is the division of the simulated system into equal-sized spatial blocks or domains, each of which is

allocated to a specific processing unit of a parallel computer. The arrays defining the coordinates, velocities

and forces for all N particles in the system are divided into sub-arrays of size ≈ N
P on each of the P processing

units, with the particles allocated geometrically among them. In order for the strategy to work efficiently, the

simulated system should possess a reasonably uniform density so that each processing unit is allocated as equal

a portion of particle data as possible. The computation of forces and integration of the equations of motion are

shared (more or less) equally between the processing units and to a large extent can be computed independently

on each unit. While tricky to program, this method is conceptually simple and particularly suited to large-scale

simulations.

The DD strategy which underpins DL MESO DPD is based on the link cell algorithm[26], which requires a

relatively short-ranged cutoff for interparticle potentials and forces. There is a need for processing units to

exchange ‘halo data’, i.e. sending the contents of link cells at the boundaries of each domain to neighbouring

units so each may have all the necessary information to compute pairwise forces acting on the particles in

its allotted domain. Similarly the force and virial contributions from particles in boundary halos need to be

returned to their original processing units for summation. The link cell algorithm is also applied in serial by

duplicating system data to create the boundary halo across periodic boundaries.

The size of the boundary halo – which can be specified by the user in the CONTROL file – should not be greater

than the minimum system dimension per domain; for good parallel performance, it is recommended that the halo

size should be no larger than one-third of the smallest subdomain dimension. The value of maxdim calculated

after reading the input files (in config module) gives the maximum sizes of force, velocity and position arrays.

This value should be large enough to hold all particles in each domain plus any particles in boundary halos,

including duplicates when running in serial or using smaller numbers of processing units. If the density of

the system is likely to be uneven, the user can increase the size of maxdim by specifying an additional density

variation in the CONTROL file.

11.1.1 Intramolecular interactions

Intramolecular interactions may be handled in two different ways: either (1) locally with each processing unit

being allocated a subset of bonds to deal with (including bonds across neighbouring units), or (2) globally with

all units holding all bond data and sharing bonded particle positions, each carrying out all bond calculations

and appropriately allocating forces to local particles. The former method may require larger boundary halo

sizes for the bond lengths being simulated but is more efficient for larger numbers of molecules and processing
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units, while the latter method requires the sharing of information between all units but does not require halo

information and is guaranteed to find all bonds.

Bookkeeping arrays (bndtbl, angtbl and dhdtbl) list all particles involved in bonded interactions according

to global index numbers and point to appropriate arrays of parameters to define the potential. If the ‘key’

bonded particle for a bond1 moves from one processing unit to another, the entry in the bookkeeping array is

also moved. At each time step a list of bonded particles in each domain (lblclst) is created to relate global

index numbers to the local index numbers used by the processing unit in force, velocity and coordinate arrays.

This global/local index list is sorted by global index number to allow cross-referencing to local index numbers

by means of a binary search.

11.1.2 Electrostatic interactions

For systems with periodic boundary conditions DL MESO DPD uses the Ewald sum to calculate Coulombic

interactions (see Section 11.5). Calculation of the real space component (in routine ewald real slater) uses

the same link cell algorithm as for other pairwise interactions, albeit using a larger cutoff radius (re) and requires

a larger boundary halo than for standard pairwise interactions.

11.2 Thermostats and integration algorithms

The integration algorithms in DL MESO DPD are based on the second-order Velocity Verlet (VV) scheme[67],

which yields the positions, velocities and forces of particles at the same time and is generally used in molecular

dynamics simulations. This algorithm has two stages. The first stage advances the particle velocities to time

t+ 1
2∆t by integrating the forces and uses the new half-step velocities to advance the position to time t+ ∆t:

~vi
(
t+ 1

2∆t
)

= ~vi (t) +
∆t

2

~Fi (t)

mi
(11.1)

~ri (t+ ∆t) = ~ri (t) + ∆t~vi
(
t+ 1

2∆t
)

(11.2)

The positions at the end of the time step allow the forces to be recalculated, before the second stage of the

algorithm is applied to advance the half-step velocities to the end of the time step by integrating with the new

force:

~vi (t+ ∆t) = ~vi
(
t+ 1

2∆t
)

+
∆t

2

~Fi (t+ ∆t)

mi
(11.3)

Five thermostatting algorithms are currently available in DL MESO DPD: two variants of the standard DPD

thermostat and three alternative schemes which apply velocity corrections to the particles after force integration.

The algorithm can be selected in the CONTROL file using the directive ensemble with the keyword nvt for

constant volume simulations or npt for constant pressure simulations. Dissipative force parameters and collision

frequencies can be specified for each interacting species pair in the FIELD file. Frozen particles are involved

in thermostatting algorithms due to the contributions they make to system virials and pressure; however they

are excluded from the force integration algorithm and their velocities are reset to their previous values (usually

zero).

11.2.1 DPD thermostat with standard Velocity Verlet integration (MD-VV) (mdvv)

This algorithm uses the drag (dissipative) and random forces, ~FDij and ~FRij respectively as described in Chapter

9, as the system thermostat, i.e. the thermostatting force ~FTij = ~FDij + ~FRij . This thermostatting force is

combined with all other forces between particles – pairwise conservative (standard and/or density-dependent),

bonding, electrostatic, planar surface, external (body) forces – and integrated using the standard Velocity Verlet

integrator.

1This is the first referenced particle in stretching bonds and the second for bond angles and dihedrals.
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The combination of the DPD thermostat with the standard MD-type VV algorithm is the simplest and least

time-consuming thermostatting algorithm available in DL MESO DPD. (If no ensemble type is selected in the

CONTROL file, DL MESO DPD will use this algorithm by default.) The drag force does, however, depend upon

particle velocities and is therefore only approximated using the mid-step values: this frequently produces a

system temperature higher than that specified by the user and requires a small time step ∆t to reduce the offset

to tolerable levels.

11.2.2 DPD thermostat with DPD Velocity Verlet integration (DPD-VV) (dpdvv)

As with the MD-VV scheme, this algorithm uses the drag and random forces as the system thermostat, which

are combined with all other forces before being integrated using the Velocity Verlet scheme. The drag force is

subsequently recalculated after the second stage using the velocities at the end of the time step[13].

The recalculation of drag forces after force integration helps to alleviate the temperature offset produced by the

MD-VV, and hence larger time steps may be used for reasonable temperature control. It does require the re-use

of the linked-list cells and inter-processor communications to recalculate the drag forces, which can significantly

increase the time required per time step compared to the MD-VV scheme.

11.2.3 Lowe-Andersen thermostat (lowe)

The Lowe-Andersen thermostat[36] is an alternative to the use of drag and random forces in the DPD thermostat,

which uses a variant of the Andersen thermostat[1]. After all other forces (conservative, bonding etc.) are

integrated using the Velocity Verlet scheme, a random sample of particle pairs have their relative velocity

replaced by a value from a Maxwellian distribution, i.e.

v◦ij = ζij

√
kBT

µij
(11.4)

where µij =
mimj
mi+mj

is the reduced mass between the two particles. The velocities of particles i and j thus

become:

~vi = ~vi −
µij
mi

(
− (êij · ~vij) + v◦ij

)
êij (11.5)

~vj = ~vj +
µij
mi

(
− (êij · ~vij) + v◦ij

)
êij (11.6)

The probability of a particle pair being thermostatted is equal to Γ∆t, where Γ is defined as the collision

frequency (with a maximum effective value of 1
∆t ), and the velocity corrections to particle pairs are applied in

a random order to prevent biasing.

The above pairwise correction of velocities is equivalent to applying a thermostatting force equal to

~FTij =
µij
∆t

(
− (êij · ~vij) + v◦ij

)
êij (11.7)

and thus a virial correction of −~FTij · ~rij is applied for each particle pair being thermostatted.

The viscosity and self-diffusion generated by this thermostat for a single species are

ν =
πρΓr5

c

75m
(11.8)

D =
kBTτD
m

(11.9)

where τD is the decay time for velocity correlations and inversely proportional to the collision frequency. The

Schmidt number is therefore proportional to Γ2

kBT
and can thus reach values up to O(107).

This thermostat is suited to systems with higher viscosities and low diffusitivies while giving the correct system

temperature for a wide range of time step sizes (within numerical errors due to Velocity Verlet force integration).
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Its implementation in parallel running uses a replicated data strategy to carry out the velocity corrections: this

requires additional memory on each processing unit for the velocities of all particles and the data required to

modify the velocities of particle pairs. The efficiency of the Lowe-Andersen thermostat thus decreases with

increasing numbers of particles in the entire system and Γ.

11.2.4 Peters thermostat (peters)

The Peters thermostat[47] is a modification of the Lowe-Andersen thermostat that reduces to standard DPD as

the time step tends to zero. After integrating all forces using the Velocity Verlet scheme, all particle pairs have

their velocities modified (in a random order) using:

~vi = ~vi −
1

mi

(
−aij (êij · ~vij) ∆t+ bijζij

√
∆t
)
êij (11.10)

~vj = ~vj +
1

mi

(
−aij (êij · ~vij) ∆t+ bijζij

√
∆t
)
êij (11.11)

where the coefficients aij and bij are chosen so that

bij =

√
2kBTaij

(
1− aij∆t

2µij

)
.

To ensure that the thermostat both reduces to the DPD thermostat as the time step reduces to zero and is not

restricted by the choice of time step, the coefficients are chosen as follows:

aij =
µij
∆t

(
1− exp

[
−γijω(rij)∆t

µij

])
(11.12)

bij =

√
kBTµij

∆t

(
1− exp

[
−2γijω(rij)∆t

µij

])
(11.13)

The above velocity corrections give an equivalent thermostatting force of

~FTij =

(
−aij (êij · ~vij) +

bijζij√
∆t

)
êij (11.14)

and a correction to the virial of −~FTij · ~rij is also applied for each particle pair.

This thermostat can be used with larger time steps than the standard DPD thermostat but with similarly

low system viscosities. As for the Lowe-Andersen thermostat, its implementation in parallel running uses a

replicated data strategy to carry out the velocity corrections, which requires additional memory per processing

unit for storing the velocities of all particles in the system and the data required to modify them. The efficiency

of the Peters thermostat therefore depends upon the total number of particles in the system: since all particle

pairs are modified, calculation times for this thermostat may be comparable to those for the Lowe-Andersen

thermostat when Γ∆t ≈ 1.

11.2.5 Stoyanov-Groot thermostat (stoyanov)

The Stoyanov-Groot thermostat[62] is a combination of the Lowe-Andersen thermostat and a Galilean-invariant

Nosé-Hoover thermostat which acts locally and on pairs of particles. During force calculations after the first

Velocity Verlet stage, the choice to use either the Lowe-Andersen or Nosé-Hoover thermostats for each particle

pair is made at random; the Lowe-Andersen thermostat is selected with a probability of Γ∆t. The system

temperature is also determined in terms of relative velocities for all particle pairs, i.e.

kBT
∗ =

∑
i>j ψ

T (rij)µij~vij
2

3
∑
i>j ψ

T (rij)
(11.15)
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where ψT (rij) is a smearing function for the temperature, chosen to reduce to zero when rij > rc: by default this

is set as ψT (rij) = 1 for r < rc. For all particle pairs that are to be subjected to the Nosé-Hoover thermostat,

an additional thermostatting force is included:

~FTij = −αwT (rij)

(
1− kBT

∗

kBT

)
[~vij · êij ] êij (11.16)

with α as a system-wide thermostat coupling parameter and wT (rij) as a switching function, which by default is

equivalent to wR(rij) = 1− rij
rc

for standard DPD. All other particle pairs are thermostatted using the standard

Lowe-Andersen method. A virial correction of −~FTij · ~rij is also made for each particle pair.

This thermostat can produce a wide range of system viscosities and diffusivities with good temperature control

and hydrodynamics, using the collision frequency Γ to obtain the required Schmidt number. The replicated

data strategy is again used for the Lowe-Andersen part, which requires memory in each processing unit to store

the velocities of all particles and the data for particle pair modification using the Lowe-Andersen scheme: the

Nosé-Hoover scheme calculates the thermostatting forces locally.

11.3 Barostats

In addition to a thermostat, a barostat may be included in simulations to obtain a desired average pressure

(P0) by adjusting the size (and shape) of the simulation cell. DL MESO DPD includes two such algorithms: a

Langevin-type barostat[29] and the Berendsen barostat[2], both of which have been coupled to all five available

thermostats.

The isotropic pressure in a system is calculated using the virial theorem:

P (t) =
1

3V (t)

[∑
i

miv
2
i (t) +

∑
i

~Fi(t) · ~ri(t)

]
(11.17)

while for anisotropic orthorhombic systems the pressure in dimension α, related to the instantaneous stress

tensor component σαα(t), is defined as

Pα(t) =
1

V (t)

[∑
i

miv
2
i,α(t) +

∑
i

Fi,α(t)ri,α(t)

]
. (11.18)

In both equations, the instantaneous values required for barostats include only the interaction forces (e.g. soft

pairwise interactions, bonds, electrostatics): they do not include virial contributions from thermostatting, which

are included in reported values of system pressure.

All barostat definitions are expressed for the more general anisotropic case: these can be applied for isotropic

systems by setting Px(t), Py(t) and Pz(t) all equal to P (t). The barostat can be selected in the CONTROL

file using the directive ensemble npt: the barostat type should be specified after the coupled thermostat.

The target system pressure can also be specified in the same file using the directive pressure. By default the

barostat is assumed to act isotropically, although the CONTROL file directive no isotropy can be used to apply

anisotropy. Frozen particles are moved when a barostat is applied but their positions relative to the dimensions

of the system remain constant during calculations.

11.3.1 Langevin barostat (langevin)

The governing equation for the Langevin barostat on an orthorhombic simulation cell[29] is the force exerted

by the piston (expressed as the time-derivative of its momentum pg,α = Wgug,α):

ṗg,α = V (Pα − P0) +
1

Nf

∑
i

miv
2
i − γppg,α + σpζp,α∆t−

1
2 (11.19)
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where Nf is the number of degrees of freedom: for a three-dimensional box containing N moving (i.e. non-

frozen) particles, Nf = 3(N − 1). γp and σp ≡
√

2
3γpWgkBT are respectively the drag and random coefficients

for the piston and ζp,α is a Gaussian random number for dimension α (this is set to the same value for all three

dimensions if operating isotropically). When both γp and σp are set to zero, the Langevin barostat reduces to

the extended system method.

The subsequent simulation cell size Lα can be determined by

L̇α =
pg,αLα
Wg

= ug,αLα (11.20)

with the barostat mass Wg chosen to be equal to NkBTτ
2
p , where τp is the characteristic barostat time and

should be set equal to between 2
γp

and 10
γp

.

The velocities and positions of the particles are calculated by integration of slightly modified differential equa-

tions:

dvi,α
dt

=
Fi,α
mi
− ug,αvi,α −

1

Nf
vi,α

∑
α

ug,α (11.21)

dri,α
dt

= vi,α + ug,αri,α (11.22)

where the force on particle i, ~Fi, includes any thermostatting forces: the time integral of these forces can be

determined for all thermostat types.

The implementation of this barostat is carried out using the Velocity Verlet scheme to integrate the equations

of motion for both the particles and the barostat. The first Velocity Verlet stage integrates the forces on the

particles

vi,α
(
t+ 1

2∆t
)

= vi,α (t) +
∆t

2

Fi,α (t)

mi
−∆tug,αvi,α (11.23)

which is followed by a similar integration for the barostat velocity:

ug,α
(
t+ 1

2∆t
)

= ug,α (t) +
∆t

2

Fg,α (t)

Wg
(11.24)

before the positions and simulation box dimensions are updated:

ri,α (t+ ∆t) = exp
(
ug,α

(
t+ 1

2∆t
)

∆t
) {
ri,α (t) + ∆tvi,α

(
t+ 1

2∆t
)}

(11.25)

Lα (t+ ∆t) = exp
(
ug,α

(
t+ 1

2∆t
)

∆t
)
Lα (t) (11.26)

At this point the forces at the end of the time step are calculated (including thermostatting forces), along with

the system pressure. Since the the barostat force requires correct velocities for both the particles and barostat,

an iterative procedure is required which begins by calculating an initial guess for the barostat velocity at the

end of the time step:

u(0)
g,α (t+ ∆t) = ug,α (t−∆t) +

2Fg,α (t) ∆t

Wg

Each iteration starts by calculating the particle velocities in a slightly modified second Velocity Verlet step:

v
(n+1)
i,α (t+ ∆t) =

exp
(
ug,α

(
t+ 1

2∆t
)

∆t
)
vi,α

(
t+ 1

2∆t
)

+ ∆t
2
Fi,α(t+∆t)

mi

1 + u
(n)
g,α∆t

(11.27)

The barostat force is then calculated using the same Gaussian random numbers for each iteration:

F (n+1)
g,α (t+ ∆t) = V (Pα − P0) +

1

Nf

∑
i

mi

(
v

(n+1)
i

)2

− γpu(n)
g,αWg + σpζp,α (11.28)

and the barostat velocity is recalculated:

u(n+1)
g,α (t+ ∆t) = ug,α

(
t+ 1

2∆t
)

+
F

(n+1)
g,α (t+ ∆t) ∆t

2Wg
(11.29)
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Equations 11.27 to 11.29 are repeated until convergence in particle velocities is achieved, i.e. when∑
i

(
~v

(n+1)
i (t+ ∆t)− ~v(n)

i (t+ ∆t)
)2

3Nf
< ε

with ε as a numerical tolerance (set to 10−6 by default). This normally takes a few iterations per time step

without requiring recalculation of particle forces or rescaling of particle coordinates.

11.3.2 Berendsen barostat (berendsen)

The governing equation for the Berendsen barostat[2] is a simple differential equation for the pressure:

dPα
dt

=
P0 − Pα

τp
(11.30)

which can be solved to give a scaling factor for the simulation volume, ~η(t):

ηα(t) = 1− β∆t

τp
(P0 − Pα(t)) (11.31)

where β is the isothermal compressibility of the system. The exact value of this property is not critical to the

algorithm, since it relies on the ratio β
τp

.

The barostat is implemented using a variant of the Velocity Verlet algorithm; after the midstep velocities are

determined, the scaling factor for time t is used to modify the particle positions and resize the simulation volume

ri,α (t+ ∆t) = ηα(t)ri,α (t) + ∆tvi,α
(
t+ 1

2∆t
)

(11.32)

Lα (t+ ∆t) = ηα(t)Lα (t) (11.33)

The remainder of the Velocity Verlet algorithm is unchanged, although the scaling factor for the beginning

of the next time step can be calculated at this point using Equation 11.31. No iteration is required for this

barostat.

11.4 Particle-particle interactions

Pairwise particle interaction parameters in DL MESO DPD are specified in the FIELD file for each species

pair using the directive interactions. Interaction parameter values and lengthscales are stored in the array

vvv(1:npot, 1:mxprm) in preparation for DPD calculations, the maximum number of parameters mxprm de-

pendent on the unbonded potential models in use.

If interaction parameters between different particle species are not specified in the FIELD file, these can be

determined by mixing rules. Energy and dissipative parameters (e.g. Aαβ and γαβ for DPD) can be determined

for unlike particle pairs as geometric means of these parameters for same-species interactions, e.g.

Aαβ =
√
AααAββ

while interaction lengths are set to the arithmetic mean, e.g.

rc,αβ =
rc,αα + rc,ββ

2

It should be noted that interaction lengths have to be less than or equal to the maximum interaction cut-off

radius rc (which applies for dissipative and random force interactions): if the maximum interaction cut-off

radius is not specified in the CONTROL file, the maximum specified value of rc,αβ will be used. Frozen particles

are included in all interactions but the resultant forces on these particles are not subsequently integrated.

Four types of pairwise interactions between particles are available in DL MESO DPD: Lennard-Jones, Weeks-

Chandler-Andersen, Groot-Warren (standard) DPD and many-body (density-dependent) DPD. In the case that

many-body DPD interactions are used for any particle pair, mixing rules cannot be used and thus interaction

parameters for all particle pairs must be specified by the user.
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11.4.1 Lennard-Jones (lj)

The Lennard-Jones potential[30] is a mathematically simple model that approximates interactions (both attrac-

tive and repulsive) between pairs of neutral atoms or molecules:

U(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(11.34)

where εij is the depth of the potential well and σij is the finite distance at which the potential is zero between

particles i and j. This potential and its related force are calculated for all interparticle distances (rij) less than

the interaction cutoff radius rc. Long-range system-wide corrections to the potential and virial are required:

U lr =
4π

V

∑
α

∑
β≥α

(2− δαβ)NαNβεαβ

(
σ12
αβ

9r9
c

−
σ6
αβ

3r3
c

)
(11.35)

W lr = −4π

V

∑
α

∑
β≥α

(2− δαβ)NαNβεαβ

(
12σ12

αβ

9r9
c

−
2σ6

αβ

r3
c

)
(11.36)

where δαβ is the Kronecker delta (1 when α = β, 0 when α 6= β) and Nα the total number of particles of species

α. These corrections multiplied by the volume are stored in the array clr to eliminate the need to adjust them

if the system volume is changed by a barostat.

11.4.2 Weeks-Chandler-Andersen (wca)

The Weeks-Chandler-Andersen potential[69] is a modification of the Lennard-Jones potential to produce purely

repulsive, short-range interactions:

U(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+ εij . (11.37)

This interaction is applied for interparticle distances up to 2
1
6σij , which should be less than or equal to the

interaction cutoff radius rc. No long-range corrections to potential energy or virials are required.

11.4.3 Standard DPD (dpd)

The Groot-Warren (standard) form of DPD[16] uses the following purely repulsive, soft potential:

U (rij) =
1

2
Aijrc,ij

(
1− rij

rc,ij

)2

. (11.38)

This conservative interaction is applied for interparticle distances up to rc,ij , which should be less than or equal

to the maximum value rc.

11.4.4 Many-body DPD (mdpd)

The conservative force in standard DPD depends only upon the species interacting and the interparticle sepa-

ration, which yields a quadratic equation of state. Many-body DPD[46, 66] is a method of providing alternative

thermodynamic behaviours to DPD particles by making conservative forces additionally dependent on local

densities.

The free energy of an inhomogeneous system with density ρ(r) can be defined as the following in both continuous

and ensemble-averaged discrete forms:

F =

∫
d~rρ(~r)ψ(ρ(~r)) (11.39)

=

〈∑
i

ψ(ρ(~ri))

〉
(11.40)
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where ψ(ρ) is the free energy per particle in a homogeneous system and ρ(~ri) is a function related to the density

at (and near) the position of particle i (~ri). The latter can be approximated by a function dependent on the

positions of particles close to particle i (ρ̃i) to allow the calculation of an instantaneous free-energy:

F̃ =
∑
i

ψ(ρ̃i).

The effective (conservative) force on particle i can be obtained from the spatial derivative of the free energy,

although only the excess part (equivalent to the potential energy U) is required since the kinetic motion of

particles automatically accounts for the ideal contribution:

~FCi = −∂F̃
ex({~rk})
∂~ri

= −
∑
j

∂ψex(ρ̃j)

∂~ri
(11.41)

The force can also be expressed in terms of pairwise interactions, taking a form similar to the standard DPD

conservative force (Equation 9.5):

~FCij =

(
∂ψex(ρ̃i)

∂ρ̃i
+
∂ψex(ρ̃j)

∂ρ̃j

)
wC(rij)

~rij
rij

(11.42)

The local-density approximation can be defined as a weighted average of instantaneous densities:

ρ̃i =

∫
d~r wρ(| ~r − ~ri |)ρ(~r, {~rk})

=
∑
j 6=i

∫
d~r wρ(| ~r − ~ri |)δ(~r − ~rj)

ρ̃i =
∑
j 6=i

wρ(rij) (11.43)

with wρ(r) as the weight function vanishing beyond a cutoff rd (which can be equal to rc or smaller) and

normalized so that
∫∞

0
4πr2wρ(r)dr = 1. The most frequently used form for the weight function is

wρ(rij) =
15

2πr3
d

(
1− rij

rd

)2

(rij < rd) (11.44)

which reduces to standard DPD when the excess free energy per particle is set to ψex(ρ̃) = π
30Aρ̃.

Multiple-component many-body DPD is also possible by defining partial local densities, e.g. for component α

ρ̃αi =
∑

j∈α,j 6=i

wρ(rij) (11.45)

and generalizing Equation 11.42:

~FCij =

(
∂ψexc(i)({ρ̃

α}i)
∂ρ̃c(j)

+
∂ψexc(j)({ρ̃

α}j)
∂ρ̃c(i)

)
wC(rij)

~rij
rij

(11.46)

with c(i) as the component to which particle i belongs (e.g. if i ∈ α, c(i) = α) and {ρ̃α}i as the set of local

densities of different components at the position of particle i.

The manybody module includes a routine (local density) to calculate local densities for each species using

Equation 11.45: the overall density for each particle can be obtained by a simple sum over all species. The user

can modify the routines manybody force and manybody potential to apply their own choices for many-body

forces and potentials respectively. Up to five many-body interaction parameters per species pair can be specified

in the FIELD file.

The many-body DPD example provided with DL MESO DPD produces a van der Waals-like equation of state

and can be used to model vapour/liquid interfaces[68]. The potential (excess free energy) per particle is given

by:

ψex(ρ̃) =
π

30
Aijρ+

πr4
d

30
Bij ρ̃

2 (11.47)
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where ρ is equivalent to ρ̃ but with the cutoff set to rc instead of rd. The associated pairwise force is equal to

~FCij =

[
Aij

(
1− rij

rc,ij

)
+Bij (ρi + ρj)

(
1− rij

rd

)]
~rij
rij

(11.48)

In the routine provided, the terms with Aij for both force and potential are calculated as though they are

standard DPD. By setting Aij < 0 and Bij > 0, a vapour/liquid mixture can be modelled and its equation of

state for a single component is given as

p = ρkBT + αAρ2 + 2αBr4
d

(
ρ3 − cρ2 + d

)
where α ≈ 0.101, c and d are numerical offsets. Parameters Aij and Bij for each interacting pair of species can

be specified in the FIELD file.

11.5 Long-ranged Electrostatic (Coulombic) Potentials

Compared to other interactions in DPD, electrostatic interactions act over considerably longer ranges, which

can also include periodic images of the system. The governing equation for finding the electric potential is the

Poisson equation, shown here in dimensionless form[15]:

∇ · (p(~r)∇ϕ) = −Γρ (11.49)

where ϕ is the electric potential, ρ the charge density (concentration of cations minus concentration of anions

per unit volume), p(~r) the local polarizability relative to a reference medium (e.g. water) and Γ the coupling

constant for the reference medium. The latter is given by

Γ =
e2

kBTε0εrrc

with e as the electron charge, ε0 the dielectric constant of a vacuum and εr the relative permittivity of the

reference medium. For water at room temperature (298K) with Nm molecules per DPD particle, Γ ≈ 20.00N
− 1

3
m .

Alternatively, the total electrostatic potential energy can be expressed as a sum of Coulombic energies (which

also include periodic images), i.e.

U =
Γ

4π

∑
i

∑
j>i

qiqj
|rij |

(11.50)

11.5.1 Standard Ewald sum with exponential charge smearing (ewald)

The method currently used in DL MESO DPD to determine the electrostatic potential is an Ewald summation[14]:

U ≡ qϕ

= Usr + U lr + Usc + U cc (11.51)

where Usr is a short-range potential energy term that sums quickly in real space, U lr is a long-range term that

sums quickly in Fourier or reciprocal space, Usc is a self-energy correction term and U cc is a correction for

systems with a net charge.

While the original form of the short-range electrostatic potential uses point charges, this cannot be used un-

modified for DPD simulations: soft beads used in combination with unlike point charges would collapse on top

of each other, forming infinitely strong ion pairs. The charges are therefore spread out over a finite volume

using a smearing charge distribution f(r). The current approach uses a Slater-type distribution, i.e.

f(r) =
q

πλ3
exp

(
−2r

λ

)
(11.52)

where λ is the decay length of the charge. This gives a potential energy between charged particles i and j of

U(rij) =
Γqiqj
4πrij

[1− (1 + βrij) exp(−2βrij)] (11.53)
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and the corresponding electrostatic force is

~FEij (rij) =
Γqiqj
4πr2

ij

[1− exp(−2βrij) (1 + 2βrij(1 + βrij))]
~rij
rij

(11.54)

where β ≡ rc
λ . For large particle separations these expressions reduce down to the standard expressions for

point charges and thus the reciprocal space part of the Ewald sum can be calculated without modification.

The real space terms for the Ewald sum are modifications of the above expressions, evaluated for particle pairs

when the separation is less than the electrostatic short-range (real space) cutoff, re. The short-range potential

energy between particles i and j is given as

Usrij =
Γqiqj
4πrij

erfc(αrij) (1− (1 + βrij) exp(−2βrij)) (11.55)

and the pairwise force is

~FE,srij =
Γqiqj
4πr2

ij

(
2αrij√
π

exp(−α2r2
ij) + erfc(αrij)

)
(1− exp(−2βrij) (1 + 2βrij(1 + βrij)))

~rij
rij

(11.56)

where α is a convergence parameter that controls the real space contribution, chosen to give negligible contribu-

tions beyond the real-space cutoff. If a calculational precision of ε is required for the Ewald sum, the required

value of α is equal to

√
|ln(εre)|
re

.

The long-range term for the Ewald sum requires the reciprocal vector ~k, which for an orthogonal periodic

simulation box of dimensions Lx × Ly × Lz is given by

~k =


2πk1
Lx

2πk2
Ly

2πk3
Lz


where k1, k2 and k3 are integers (positive and negative) from zero to large values specified by the user as

kmax1 , kmax2 and kmax3 respectively for x-, y- and z-dimensions: the maximum reciprocal vector ~kmax using

the maximum k values can also be defined. Adjustments can be made to this vector to account for shearing

boundaries[70].

The long-range potential energy term for the entire system is given by

U lrtot =
Γ

2V

~kmax∑
~k 6=0

exp
(
− k2

4α2

)
k2

∣∣∣∣∣∣
∑
j

qj exp
(
−i~k · ~rj

)∣∣∣∣∣∣
2

(11.57)

where i is the imaginary constant (
√
−1). Differentiation of the potential gives the long-range electrostatic force

on a particle:

~FE,lrj = −Γqj
V

~kmax∑
~k 6=0

i~k exp
(
i~k · ~rj

) exp
(
− k2

4α2

)
k2

∑
n

qn exp
(
−i~k · ~rn

)
(11.58)

Charged frozen particles may interact with non-frozen particles but interactions between frozen particles must

be excluded. While the real space electrostatic potential and forces between charged frozen particles can be

ignored, pairwise correction terms are required to remove their contributions in reciprocal space. The potential

energy to be removed between a pair of charged frozen particles with Slater-like charge distributions is given as

U lr,corrij =
Γqiqj
4πrij

erf(αrij) (1− (1 + βrij) exp(−2βrij)) (11.59)

while the pairwise force is

~FE,lr,corrij =
Γqiqj
4πr2

ij

(
erf(αrij)−

2αrij√
π

exp(−α2r2
ij)

)
(1− exp(−2βrij) (1 + 2βrij(1 + βrij)))

~rij
rij
. (11.60)
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Even though the forces on frozen particles are ignored during integration, these do contribute to the system

potential energy, virial and stress tensor terms and should therefore be evaluated.

The self-energy correction term is constant for a given system for all time steps and is equal to

Usctot = − Γα

4π
3
2

∑
i

q2
i (11.61)

while the system charge correction is

U cctot = − Γ

8α2V

(∑
i

qi

)2

. (11.62)

No additional forces are required for these terms.

In DL MESO DPD, the module ewald module contains the most important routines for calculating electrostatic

interactions using the algorithm described above. The real space (short-range) component is calculated (in

routine ewald real slater) using a link cell algorithm with a cutoff radius of re; a larger boundary halo

than for standard pairwise interactions is therefore required. The reciprocal space (long-range) component is

calculated using the scheme described by [58], parallelized by distribution over atomic sites, which requires

global summations but is more efficient in terms of memory usage than distribution of ~k vectors. The routine

ewald reciprocal also adds the self-interaction and charged system corrections, which are calculated using

the routine elecgen in config module. The routine ewald frozen slater calculates the corrections to forces,

potential energy, virial and stress tensors that are required to exclude interactions between charged frozen

particles: these corrections only need to be calculated once if the volume is held constant (and thus the frozen

particles do not move) but have to be recalculated at each time step if a barostat is applied.

This method can be invoked by using the directives ewald, permittivity and smear in the CONTROL file: the

first is used to set the real-space convergence parameter (α) and k-space vector range, the second to set the

permittivity coupling constant (Γ) and the third with the keyword slater used to set the smearing coefficient

β.

11.6 Bond interactions between particles

Molecules of particles bonded together can be included in calculations using a FIELD file to define the properties

and topologies of the bonds, angles and dihedrals between them. These data are used in the start subroutine

to add the specified numbers of molecules into the system before DPD calculations commence and to create

tables listing the particles that are included in bonds, angles and dihedrals.

11.6.1 Stretching bonds

DL MESO DPD can model four forms of bond potential (and corresponding force) between specified particles,

all of which are functions of the distance between them. The available bond forms between particles i and j are

as follows:

1. Harmonic (Hookean/Fraenkel) bond:

U (rij) =
κ

2
(rij − r0)

2
(11.63)

2. (Shifted) Finitely Extendible Non-linear Elastic (FENE) bond:

U (rij) =

{
− 1

2κr
2
max ln

[
1− (rij−r0)2

r2max

]
rij < r0 + rmax

∞ rij ≥ r0 + rmax
(11.64)
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3. Marko-Siggia Worm-Like Chain (WLC)[37]:

U (rij) =

 kBT
2Ap

[
1

2(1−
rij
rmax

)
− 1

2(1+
rij
rmax

)
+

r2ij
r2max

]
rij < rmax

∞ rij ≥ rmax
(11.65)

4. Morse potential bond[44]:

U (rij) = De [1− exp (−β (rij − r0))]
2

(11.66)

where ~rij = ~ri − ~rj , r0 is an equilibrium bond length, rmax the maximum specified bond length or extension, κ

is a spring force constant, Ap the persistence length of a wormlike chain, De the potential well depth and β the

potential ‘width’.

The force on particle i due to a bond potential is obtained from the general formula:

~Fi = − 1

rij

[
∂

∂rij
U (rij)

]
~rij (11.67)

with the force acting on particle j equal to the negative of this, and the virial contribution from the stretching

bond given by

W = −~rij · ~Fi, (11.68)

with only one contribution per bond2.

11.6.2 Bond angles

DL MESO DPD includes three methods for modelling potentials and forces between three bonded particles due

to the angle formed between them, θijk. The potentials are given as follows:

1. Harmonic:

U (θijk) =
κ

2
(θijk − θ0)

2
(11.69)

2. Harmonic cosine:

U (θijk) =
κ

2
(cos θijk − cos θ0)

2
(11.70)

3. Cosine:

U (θijk) = A [1 + cos (mθijk − δ)] (11.71)

where A and κ are angle force constants, m is the multiplicity, δ the angle at minimum potential and θ0 an

equilibrium bond angle.

The angle across particles i, j and k can be determined from the bond vectors ~rij = ~ri − ~rj and ~rkj = ~rk − ~rj :

θijk = cos−1

{
~rij · ~rkj
rijrkj

}
(11.72)

The most general form for the bond angle potential is given thus:

U (θijk, rij , rkj) = A (θijk)S (rij)S (rkj)S (rik) (11.73)

2This expression is also used for the virial contribution from the standard DPD pairwise forces, i.e. Equation (9.3), again only
applying a single contribution per particle pair.
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with A (θ) as a purely angular function and S (r) a screening or truncation function. The force on particle ` in

dimension α is thus given by:

Fα` = − ∂

∂xα
U (θijk, rij , rkj) (11.74)

= −S (rij)S (rkj)S (rik)
∂

∂rα`
A (θijk)

−A (θijk)S (rkj)S (rik) (δ`i − δ`j)
rαij
rij

∂

∂rij
S (rij)

−A (θijk)S (rij)S (rik) (δ`k − δ`j)
rαkj
rkj

∂

∂rkj
S (rkj)

−A (θijk)S (rij)S (rkj) (δ`k − δ`i)
rαik
rik

∂

∂rik
S (rik) (11.75)

with δab = 1 if a = b and δab = 0 if a 6= b. In the absence of screening terms, the above formula reduces to

Fα` = − ∂

∂rα`
A (θijk) (11.76)

=
1

sin θijk

∂

∂θijk
A (θijk)×{

(δ`j − δ`i)
rαkj
rijrkj

+ (δ`j − δ`k)
rαij

rijrkj
− cos (θijk)

[
(δ`j − δ`i)

rαij
r2
ij

+ (δ`j − δ`k)
rαkj
r2
kj

]}
(11.77)

The contribution to the virial from the angle is given by

W = −
(
~rij · ~Fi + ~rkj · ~Fk

)
(11.78)

which is equal to zero for bond angle potentials without screening terms[59].

11.6.3 Bond dihedrals

Three potential models for bond dihedrals along particles i, j, k and l are provided in DL MESO DPD as

follows:

1. Cosine torsion:

U (φijkl) = A [1 + cos (mφijkl − δ)] (11.79)

2. Harmonic:

U (φijkl) =
κ

2
(φijkl − φ0)

2
(11.80)

3. Harmonic cosine:

U (φijkl) =
κ

2
(cosφijkl − cosφ0)

2
(11.81)

where A and κ are dihedral force constants, m is the multiplicity, δ the dihedral at minimum potential and φ0

an equilibrium bond dihedral.

The dihedral angle across all four particles (or between planes ij and kl) is given by

φijkl = cos−1B (~rij , ~rjk, ~rkl) (11.82)

where

B (~rij , ~rjk, ~rkl) =
(~rij × ~rjk) · (~rjk × ~rkl)
|~rij × ~rjk||~rjk × ~rkl|

(11.83)

which gives a negative value for φijkl if the vector (~rij × ~rjk) · (~rjk × ~rkl) is in the same direction as the bond

vector ~rjk and positive if in the opposite direction.
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The force on particle ` acting in the α direction is given by

Fα` = − ∂

∂xα
U (φijkl) (11.84)

=
1

sinφijkl

∂

∂φijkl
U (φijkl)

∂

∂rα`
B (~rij , ~rjk, ~rkl) . (11.85)

Using the following definition [
~a ~b
]
α
≡
∑
β

(1− δαβ) aβbβ

the derivative of B (~rij , ~rjk, ~rkl) is given by

∂

∂rα`
B (~rij , ~rjk, ~rkl) =

1

|~rij × ~rjk||~rjk × ~rkl|
∂

∂rα`
{(~rij × ~rjk) · (~rjk × ~rkl)}

−cosφijkl
2

{
1

|~rij × ~rjk|2
∂

∂rα`
|~rij × ~rjk|2 +

1

|~rjk × ~rkl|2
∂

∂rα`
|~rjk × ~rkl|2

}
(11.86)

with

∂

∂rα`
{(~rij × ~rjk) · (~rjk × ~rkl)} = rαij

(
[~rjk~rjk]α (δ`k − δ`l) + [~rjk~rkl]α (δ`k − δ`j)

)
+

rαjk
(
[~rij~rjk]α (δ`l − δ`k) + [~rjk~rkl]α (δ`j − δ`i)

)
+

rαkl
(
[~rij~rjk]α (δ`k − δ`j) + [~rjk~rjk]α (δ`i − δ`j)

)
+

2rαjk [~rij~rkl]α (δ`l − δ`k) (11.87)

∂

∂rα`
|~rij × ~rjk|2 = 2rαij

(
[~rjk~rjk]α (δ`j − δ`i) + [~rij~rjk]α (δ`j − δ`k)

)
+

2rαjk
(
[~rij~rij ]α (δ`k − δ`j) + [~rij~rjk]α (δ`i − δ`j)

)
(11.88)

∂

∂rα`
|~rjk × ~rkl|2 = 2rαkl

(
[~rjk~rjk]α (δ`l − δ`k) + [~rjk~rkl]α (δ`j − δ`k)

)
+

2rαjk
(
[~rkl~rkl]α (δ`k − δ`j) + [~rjk~rkl]α (δ`k − δ`l)

)
(11.89)

It can be shown both algebraically and thermodynamically that the dihedral makes no contribution to the

virial[59].

Improper dihedrals — which limit the geometry of molecules — can be applied using the same procedure as

standard dihedrals and no distinction is made between them in DL MESO DPD.

11.7 Surface interactions

The default boundaries for a simulation box are periodic, i.e. particles leaving the system are replaced at

the opposite face with the same velocity. Certain systems may require alternative boundary conditions and

DL MESO DPD can include these at the system boundaries. The directive surface in the CONTROL file can

be used to specify the type of surface interaction (hard, frozen or shear) and which surface(s) are to be

included (srfx, srfy, srfz: each set to 0 for periodic boundaries and 1 or greater for other types). Parameters

required for wall-particle interactions can be specified using the same directive in the FIELD file. The module

surface module includes routines to set up and apply boundary conditions at those surfaces.

Care should be taken to ensure that the initial configuration does not include bonds crossing any boundary

that will be non-periodic. DL MESO DPD will ensure this is the case for simulations starting from scratch but

cannot check for bonds crossing non-periodic boundaries in CONFIG files.
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11.7.1 Hard reflecting boundaries (hard)

This boundary condition is applied by using a combination of specular (free-slip) reflection at the system

boundaries and a soft short-range wall repulsion to reduce density oscillations[50]. The reflection is achieved

by moving any particle leaving the system at a particular boundary back into it and inverting the velocity

component normal to the wall (but maintaining the tangential momentum), which is achieved with the routine

surfacebounce. The soft short-range wall repulsion is given by

Uwall(z) = 1
2Awall,αzc

(
1− z

zc

)2

, (z < zc) (11.90)

where Awall,α is the repulsive force magnitude with species α, z is the distance between the particle and the wall

and zc the surface repulsion range. The repulsion is applied at the same time as all pairwise forces using the

routine hardreflect. Since the walls are assumed to be non-porous, no interactions across them are included

and thus boundary halos adjacent to walls are not used.

The repulsive force magnitudes between the boundary and each species are specified in the FIELD file using the

directive surface, while the same directive in the CONTROL file is used to determine the surface repulsion cutoff

and which boundary surfaces should be hard and reflecting.

11.7.2 Frozen bead walls (frozen)

This boundary condition is applied by adding layers of frozen beads which do not move during the simulation

but still interact with all other particles. If appropriate choices for the density of frozen beads in the walls and

interactions between frozen and non-frozen particles are made, non-porous boundaries with no slip conditions

can be obtained, albeit at the cost of density fluctuations near the walls[51].

To use this boundary condition, a species of frozen beads needs to be specified in the FIELD file, along with

the interaction types and parameters between this species and all others. The directive surface is used in the

CONTROL file to specify which boundary surfaces should include frozen beads, while the same directive in the

FIELD file identifies the frozen bead species, the bead density and thickness of the wall regions: the number of

beads required is automatically determined and the size of the system is adjusted to include the additional wall

regions, i.e. the user does not have to include the walls in the system dimensions given in the CONTROL file.

This boundary condition can only be set up in this manner for new simulations, either starting from scratch

or using a CONFIG file. If creating a CONFIG file from a previous simulation, users are advised to use the hard

reflecting boundary condition described above to ensure molecules remain within the required non-periodic

boundaries. Simulations with frozen bead walls can be restarted but these walls must already be included in

the restart (export*) files and cannot subsequently be added.

11.7.3 Shearing periodic walls (shear)

Shearing walls moving at a specified velocity are applied using the Lees-Edwards boundary condition[34]: each

particle that moves through the otherwise periodic boundary has its velocity modified and is shifted by a

distance related to the wall velocity, i.e.

∆~xw = ~Vwt (11.91)

where ~Vw is the velocity of the moving boundary. Interactions between pairs of particles across the periodic

boundary (taking the positional shift into account) are still calculated, but pairwise thermostats are not applied

across this boundary to avoid quenching the modification of particle velocities, particularly with high values for

dissipative force coefficients (γ) or collision frequencies (Γ), and maintain the correct shear rate[5].

The directive surface is used in the CONTROL file to specify which boundaries should move, while the external

directive in the FIELD file is used to specify the velocity of the moving walls. This boundary condition is only

applied after equilibration has taken place.



Chapter 12

DL MESO DPD Input and Output Files

12.1 Input files

All user-specified input files for DL MESO DPD must be in ANSI text format, with keywords (where necessary)

and numerical values separated from each other with spaces or commas: tabs are currently not recognised by

the parsing utilities.

Define system: CONTROL

The CONTROL file contains the control variables for running a DPD simulation and is read by the subroutine

read control in config module. Such files can can be obtained either via use of the DL MESO GUI or by

editing existing files of that name, such as those in the DEMO/DPD directory. These consist primarily of directives:

character strings that appear as the first entry of a data record and invoke a particular operation or provide

numerical parameters. Extra options may be added by the inclusion of keywords to qualify a particular directive.

Directives can be included in any order except for the simulation name (up to 80 characters long) on the first

line of the file and the finish directive which marks the end of the file.

A list of the directives available follows, with bold type specifying the minimum number of letters required by

DL MESO DPD. Some directives may include optional words or parameters as indicated by brackets.

directive: meaning:

boundary halo f set size of boundary halo (overriding default values determined from interaction

cutoff, maximum bond lengths and short-range electrostatics) as f length units

close time f set job closure time to f seconds

cutoff f set maximum interaction cutoff radius, rc, to f length units

densvar f allow for local variation of ≈ f % in the system density of particles (useful for

non-homogeneous or non-equilibrium simulations, default f = 0

electrostatic cutoff f set required short-range electrostatic cutoff radius, re, to f length units (default

f = rc)

ensemble nvt mdvv select NVT ensemble, DPD thermostat with standard MD-like Velocity Verlet

integration (default ensemble if otherwise not specified)

ensemble nvt dpdvv select NVT ensemble, DPD thermostat with DPD Velocity Verlet integration

ensemble nvt lowe select NVT ensemble, Lowe-Andersen thermostat

ensemble nvt peters select NVT ensemble, Peters thermostat

ensemble nvt stoyanov α select NVT ensemble, Stoyanov-Groot thermostat with coupling parameter α
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ensemble npt Q langevin f1 f2 select NPT ensemble, thermostat type Q (i.e. mdvv, dpdvv, lowe or peters)

with Langevin barostat, setting relaxation time (τp) and viscosity parameter

(γp) as f1 and f2 respectively

ensemble npt stoyanov α

langevin f1 f2

select NPT ensemble, Stoyanov-Groot thermostat with coupling parameter α

and Langevin barostat with relaxation time f1 and viscosity parameter f2

ensemble npt Q berendsen f select NPT ensemble, thermostat type Q with Berendsen barostat, setting ratio

of compressibility to relaxation time, β
τp

, to f

ensemble npt stoyanov α

berendsen f

select NPT ensemble, Stoyanov-Groot thermostat with coupling parameter α

and Berendsen barostat with compressibility/relaxation time ratio f

equilibration (steps) n equilibrate system for the first n timesteps (default n = 0)

ewald (sum) α k1 k2 k3 calculate electrostatic forces using Ewald sum with real-space convergence pa-

rameter α and reciprocal space (k-vector) range (k1, k2, k3)

finish close the CONTROL file (last data record)

global bonds calculate bonded interactions globally by storing bond data on all processors

and sharing bonded particle positions (default: calculate bonded interactions

locally)

job time f set maximum job time to f seconds

manybody cutoff f set required many-body DPD interaction radius, rd, to f length units (default

f = rc)

ndump n write restart data to export files every n timesteps (default n = 1000)

nfold i j k option to create volumetrically expanded version of current system (described

by CONFIG and FIELD files) by replicating CONFIG file’s contents (i, j, k) times

while preserving topology of FIELD file

no conf ig ignore contents of CONFIG file and create initial configuration based purely on

FIELD file

no electrostatics ignore electrostatics in simulation

no index ignore particles’ indices as read from CONFIG file and set their indexing accord-

ing to order of reading

no isotropy switch off isotropy for barostat (i.e. allow uneven contractions and expansions

of simulation volume)

permittivity (constant) f set permittivity constant for system, Γ, to f

pressure f set required system pressure to f (target pressure for constant pressure ensem-

bles)

print (every) n print system data every n timesteps

rcut f see cutoff

restart restart job from end point of previous run (i.e. continue current simulation

using export files)

restart noscale restart job from previous run without rescaling to system temperature (i.e.

begin a new simulation from older run without temperature reset)

restart scale restart job from previous run after rescaling to system temperature (i.e. begin

a new simulation from older run with temperature reset)

scale (temperature) (every) n rescale system temperature every n steps during equilibration

smear slater f apply Slater-type (exponential) charge smearing with coefficient, β, set to f

stack (size) n set rolling average stack to n timesteps

stats (every) n accumulate statistics data and write to CORREL file every n timesteps

steps n run simulation for n timesteps

surface cutoff f set required surface repulsive range, zc, to f length units (default f = rc)

surface hard i set hard adsorbing walls orthogonal to i-axis (x, y, z) if specified (multiple

walls can be specified if separated with spaces or commas)
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surface frozen i set frozen bead walls orthogonal to i-axis (x, y, z) if specified (multiple walls

can be specified if separated with spaces or commas). Note that this can only

be used for brand new simulations: this directive is ignored if a simulation is

restarted.

surface shear i set moving Lees-Edwards periodic walls orthogonal to i-axis (x, y, z) if specified

(a single wall can be specified and only the first specified dimension will be used)

temperature f set required simulation temperature (kBT ) to f (target temperature for con-

stant temperature ensembles)

trajectory (i) j write trajectory data to HISTORY file(s) with controls: i = start timestep for

dumping configurations (default: equilibration time), j = timestep interval

between configurations

timestep f set timestep to f time units

volume f1 (f2 f3) set system size to either cubic volume f1 or orthorhombic dimensions (f1, f2,

f3)

While not every directive has to be included in the CONTROL file for a valid simulation and many hold default

values if unspecified, the following are mandatory and must be set to values greater than zero:

� cutoff

� temperature

� timestep

� volume (if no CONFIG file is available)

Superfluous parameters and switches for particular systems (e.g. specified pressure for constant volume simu-

lations) can be safely omitted from the CONTROL file without causing runtime problems. If the user wishes to

include new directives in the CONTROL file, modifications to the parameter recognition loop in the read config

subroutine (config module) will be required.

Define interactions: FIELD

The FIELD file contains the species and force field information required for both bonded and unbonded interac-

tions, and is read by the read field and scan field subroutines in config module. Apart from the name of

the simulation (up to 80 characters) in the first line, this file contains a number of directives, each indicating

the type and number of interactions to follow.

The species information must be provided first, as this will be required to specify interaction data (which can

be included in any order), using the directive species n. This indicates that data for n species are to follow,

each species given in a single line using the following format:

name a8 name of species

mass real particle mass for species

charge real particle charge for species

populations integer unbonded population of species

frozen integer determines whether particles of this species are frozen (1) or not (0)

The unbonded population can be omitted for species which are wholly contained in molecules, as can the frozen

particle parameter for unfrozen species.
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Non-bonded interactions are specified with the directive interactions n, with n pairwise interactions to follow;

each is given in a single line using the format:

species 1 a8 name of species 1

species 2 a8 name of species 2

key a4 interaction key, see Table 12.2

variable 1 real interaction parameter, see Table 12.2

variable 2 real interaction parameter, see Table 12.2

variable 3 real interaction parameter, see Table 12.2

variable 4 real interaction parameter, see Table 12.2

variable 5 real interaction parameter, see Table 12.2

variable 6 real interaction parameter, see Table 12.2

variable 7 real interaction parameter, see Table 12.2

If any interactions are many-body DPD, the interactions for all possible species pairs must be specified in the

FIELD file and values for all parameters must be given, even if not all of them are required for the many-body

DPD model in use. Otherwise only like-like (same species, i.e. i = j) interactions are required, as any missing

interaction data can be derived using mixing rules. If using the Lowe-Andersen or Stoyanov-Groot thermostats,

the dissipative factor γij should be replaced with the bath collision frequency Γij .

Table 12.2: Non-bonded interactions

key interaction type Parameters (1-7)

lj Lennard-Jones εij σij γij - - - -

wca Weeks-Chandler-Andersen εij σij γij - - - -

dpd Groot-Warren DPD Aij rc,ij γij - - - -

mdpd Many-body DPD Aij Bij Cij Dij Eij rc,ij γij

Molecules are specified using the directive molecules n, with data for n molecule types to follow. Immediately

after this directive, the following records are included to define each molecule type:

1. Molecule name

which can be a character string of up to 8 characters in length

2. nummols n

where n is the number of times a molecule of this type appears in the system. This is followed by the

data for the molecule type:

3. beads n

where n gives the number of beads (particles) in this molecule type. A number of records follow for each

bead:

name a8 name of species

x real relative x-coordinate for bead

y real relative y-coordinate for bead

z real relative z-coordinate for bead
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The relative coordinates are used to define the initial shape of the molecule when it is inserted into the

system: these are not used if an initial configuration is already available.

4. no isomer

indicates that the molecule shape should not be reflected or otherwise modified when added to the system.

This directive is optional and should be left out if no restrictions on molecule insertion are to apply.

5. bonds n

where n gives the number of flexible bonds in the molecule. Each of the subsequent n records contains:

bond key a4 potential key, see Table 12.3

index 1 (i) integer first bead index in bond

index 2 (j) integer second bead index in bond

variable 1 real potential parameter, see Table 12.3

variable 2 real potential parameter, see Table 12.3

variable 3 real potential parameter, see Table 12.3

variable 4 real potential parameter, see Table 12.3

Note that the bead indices are those arising from numbering each bead in the molecule from 1 to the

number specified in the beads directive for this molecule. The same numbering scheme applies for all

descriptions of the molecule: DL MESO DPD will itself construct the global numbers for all particles in

the system.

6. angles n

where n gives the number of angle bonds in the molecule. Each of the n records following contains:

angle key a4 potential key, see Table 12.4

index 1 (i) integer first bead index in bond angle

index 2 (j) integer second bead index in bond angle (central site)

index 3 (k) integer third bead index in bond angle

variable 1 real potential parameter, see Table 12.4

variable 2 real potential parameter, see Table 12.4

variable 3 real potential parameter, see Table 12.4

variable 4 real potential parameter, see Table 12.4

Angle-based parameters, e.g. θ0, should be given in degrees. This directive and associated data records

need not be specified if the molecule contains no bond angles.

7. dihedrals n

where n gives the number of dihedral interactions in the molecule. Each of the following n records contains:

dihedral key a4 potential key, see Table 12.5

index 1 (i) integer first bead index in bond dihedral

index 2 (j) integer second bead index in bond dihedral (central site)

index 3 (k) integer third bead index in bond dihedral

index 4 (l) integer fourth bead index in bond dihedral

variable 1 real potential parameter, see Table 12.5

variable 2 real potential parameter, see Table 12.5

variable 3 real potential parameter, see Table 12.5

variable 4 real potential parameter, see Table 12.5
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Angle-based parameters, e.g. φ0, should be given in degrees. This directive and associated data records

need not be specified if the molecule contains no bond dihedrals.

8. finish

indicates the end of details for a molecule type. Each subsequent molecule type can be entered after this

directive, beginning with its name and ending with the finish directive.

Table 12.3: Bond potentials

key potential type Variables (1-4) functional form

harm Harmonic κ r0 - - U(r) = 1
2κ(r − r0)2

fene (Shifted) FENE κ r0 rmax - U(r) = −0.5κrmax ln

[
1−

(
r−r0
r2max

)2
]

: r < rmax + r0

U(r) =∞ : r ≥ rmax + r0

wlc Worm-like chain Ap rmax - - U(r) = kBT
2Ap

[
1

2(1− r
rmax

)
− 1

2(1+ r
rmax

)
+ r2

r2max

]
: r < rmax

U(r) =∞ : r ≥ rmax

mors Morse De r0 β - U(r) = De[1− exp(−β(r − r0))]2

Table 12.4: Bond angle potentials

key potential type Variables (1-4) functional form

harm Harmonic κ θ0 - - U(θ) = 1
2κ(θ − θ0)2

hcos Harmonic cosine κ θ0 - - U(θ) = 1
2κ(cos θ − cos θ0)2

cos Cosine A m δ - U(θ) = A [1 + cos (mθ − δ)]

Table 12.5: Bond dihedral potentials

key potential type Variables (1-4) functional form

cos Cosine torsion A m δ - U(φ) = A[1 + cos(mφ− δ)]

harm Harmonic κ φ0 - - U(φ) = 1
2κ(φ− φ0)2

hcos Harmonic cosine κ φ0 - - U(φ) = 1
2κ(cosφ− cosφ0)2

Surface interactions can be specified using the directive surface. If hard adsorbing surfaces are to be used, this

directive should be followed by entries specifying the soft short-range repulsions for all species:

name a8 name of species

Awall real soft short-range repulsion between species and wall

while if frozen bead surfaces are in use, the surface directive should be followed by a single line specifying the

properties for the walls to be constructed:
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name a8 name of frozen bead species

ρwall real density of frozen beads in wall regions

xwall real thickness of wall region

External fields are flagged by the directive external, followed by a line with a keyword indicating the type of

field to be applied and the field parameters. A gravitational field can be specified using the keyword grav and

three real values representing the x-, y- and z-components of gravitational acceleration, i.e.

grav Gx Gy Gz

If using the Lees-Edwards shearing boundary condition, the velocity of the walls in dimension α can be specified

using the keyword shear and three real values representing the x-, y- and z-components for the velocity at

xα = Lα, i.e.

shear Vw,x Vw,y Vw,z

Note that the velocity at xα = 0 will be equal in magnitude but opposite in direction, and that the velocity

component for dimension α will be ignored.

The FIELD file must be closed with the directive close.

If molecules are to be included in the system, the supplied C++ program molecule-generate in the directory

DPD/utility can be used to either create a new FIELD file with the required data or append it to a pre-existing

file: see Appendix B for more details. Example files in the DEMO/DPD directory can be examined for this purpose.

Define initial state: CONFIG

An optional CONFIG file can be included to define the initial state of the system, which can include the positions,

velocities and forces for each particle1. This file is read by the subroutine read config in start module and

scanned by the subroutine scan config in config module.

At the beginning of the file, five lines of information (of which the first two are mandatory) have to be included:

� The simulation name (80 characters)

� The CONFIG file key levcfg (integer), the periodic boundary key imcon (integer), the number of particles

in the file (integer, optional) and the configuration energy (real, optional)

� The x-, y- and z-components for the x-axis vector (real, optional)

� The x-, y- and z-components for the y-axis vector (real, optional)

� The x-, y- and z-components for the z-axis vector (real, optional)

The file key levcfg is set depending on the information available for each particle: 0 for positions only, 1 for

positions and velocities or 2 for positions, velocities and forces. If particle velocities are not specified, these

are generated at random to produce a distribution corresponding to the required system temperature, while

unknown forces are set to zero. The simulation name, number of particles in the file and configuration energy

are not read by DL MESO DPD and can thus be ignored (although the line for the simulation name must

remain). If axes vectors are included in the CONFIG file and the value of imcon is greater than zero, these will

be read on the assumption that the simulation volume is orthorhombic (the only possible shape available in

DL MESO DPD).

Each particle is represented by a block record, with at least two lines of information:

1This file is formatted identically to CONFIG files used in DL POLY[60, 65], except that the origin is set as the back bottom left
corner of the simulation volume instead of the centre.
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� The species name (8 characters) or number (integer) and the global particle number (integer, optional)

� The x-, y- and z-coordinates for the particle (real)

� The x-, y- and z-components of particle velocity (real, if levcfg> 0)

� The x-, y- and z-components of force on the particle (real, if levcfg> 1)

If global particle numbers are not included or the no index option is invoked in the CONTROL file, these are

generated automatically for the particles in the order specified by the CONFIG file. Care should be taken that any

particles belonging to molecules are numbered correctly, since the bond information is assigned in an identical

fashion to unspecified systems, i.e. numbering after all loose particles in the relative order specified by the FIELD

file. If the nfold option is invoked in the CONTROL file, DL MESO DPD will duplicate the given configuration

in each Cartesian direction and assign global particle numbers to the enlarged system in a similar fashion, i.e.

unbonded particles precede bonded ones and molecules are ordered according to the FIELD file.

CONFIG files can be created from restart files of previous simulations using the supplied Fortran90 program

exportconfig in the directory DPD/utility; see Appendix B for more details. Frozen particle walls, if specified

in the CONTROL file, can be added to systems with CONFIG files (with or without duplication) but users have

to ensure that any molecules do not cross boundaries where frozen particle walls will be placed: no checks are

available to prevent this from happening but CONFIG files could be created from previous simulations involving

hard adsorbing surfaces.

12.2 Output files

General output file: OUTPUT

This ANSI text file is generated by all DPD calculations and contains:

� The system and bond/angle/dihedral properties used for calculations.

� Domain decomposition details (Parallel version only).

� The starting positions and velocities of a particle sample.

� The calculation time, current values and rolling averages for the total energy, potential energy (total, elec-

trostatic, and from bond stretching, angles and dihedrals), virial, kinetic energy, pressure and temperature

every nsbpo time steps.

� Final averages and fluctuations (standard deviations) over all time steps after equilibration.

� The final positions and velocities of a particle sample.

� Elapsed and average times for the calculation.

Restart file(s): export*

Each processing unit produces a restart file with a name beginning with export every ndump time steps. This

binary file contains the following information for the time step:

� Name of DPD calculation.

� Numbers of particles, bonds, angles and dihedrals in the processing unit.

� Specified temperature, number of time steps, system volume.
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� Current state of random number generators.

� Particle global identity numbers, species and molecule numbers

� Bond, angle and dihedral tables.

� Particle Cartesian coordinates, velocities, forces and virials.

� Current time step and statistical properties (current values, cumulative sums and fluctuations, rolling

averages and stacks).

In combination, the export* files can restore a stopped DPD calculation. They can also be used to generate

a plot at the given time step or a CONFIG file for subsequent simulations using the utilities exportimage and

exportconfig respectively in the DPD/utility directory; Appendix B gives instructions for their use.

Trajectory file(s): HISTORY*

If the trajectory option is specified in the CONTROL file, each processing unit will generate a trajectory file with

a name beginning with HISTORY every ntraj time steps starting from timestep straj. Each binary file contains

some of the system properties — including an identity number for each molecule — followed by the positions

and velocities for each particle in the domain.

The HISTORY* files can be used with the utilities traject and trajectselected in the DPD/utility directory

to produce plottable VMD files, with sets of bonded particles represented as residues. The utility local in

the same directory can calculate localized properties (e.g. temperature, composition) from the same files and

produces VTK files with these properties as cell data. Appendix B gives instructions for their use.

Statistical data file: CORREL

If the parameter lcorr is set to true, DL MESO DPD will generate an ANSI text file containing statistical data

every iscorr time steps, which can later be imported into a spreadsheet or used by graph-plotting software. The

formatting of the data varies depending on which kinds of interactions (bonds, angles, dihedrals, electrostatics)

were used and whether a barostat was applied, based on the overall format (in a single line):

t Etot Epot,tot Epot,elec Epot,bond Epot,angle Epot,dihed

P σxx σxy σxz σyx σyy σyz σzx σzy σzz V T

〈rbond〉 rbond,max rbond,min 〈θangle〉 〈φdihed〉

where t is the time, E energy (tot denoting total, pot potential), P pressure, σij stress tensor, V volume, T

temperature, 〈rbond〉 the mean bond length, rbond,max and rbond,min the maximum and minimum bond lengths,

〈θangle〉 the mean bond angle (in degrees) and 〈φdihed〉 the mean bond dihedral (in degrees). Any property

which does not vary or is not measured during the simulation, e.g. volume for NVT ensembles, is omitted from

each line of data.





Chapter 13

DL MESO DPD Package Reference

13.1 Overview

DL MESO DPD consists of seventeen Fortran90 modules, which should be compiled in the following order prior

to the main program itself:

� constants

Contains the constants and parameters required by DL MESO DPD.

� variables

Contains the globally available variables and arrays required by DL MESO DPD.

� numeric container

Contains random number generators and other general-purpose functions (e.g. scale sum, complementary

error function).

� comms module

Contains all subroutines necessary for parallel computation.

� error module

Contains subroutines to print error messages and close down DL MESO DPD in a controlled manner.

� parse utils

Contains functions to read in text data from input files.

� surface module

Contains subroutines for applying boundary conditions at system planes, e.g. solid walls.

� ewald module

Contains subroutines for calculating forces due to electrostatic interactions using Ewald summation-based

methods.

� manybody module

Contains subroutines for calculating density-dependent forces between particles, including the calculation

of localized densities.

� bond module

Contains book-keeping and force calculation routines for bonds, angles and dihedrals.

� domain module

Contains subroutines to construct parallel link cells, import and deport particles in and export particle

data to domain boundary halos.

167
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� start module

Contains subroutines to initialize and restart DPD calculations.

� config module

Contains subroutines to read in input files with system and molecule/bond data, to zero all parameters

and accumulators for statistical data and (for parallel version only) determine 3D domain decomposition.

� field module

Contains subroutines to calculate pairwise forces between particles.

� integrate module

Contains subroutines to integrate the equations of motion using the Velocity Verlet scheme and apply

various thermostats and barostats.

� statistics module

Contains subroutines to calculate and write out statistical and trajectory data.

� run module

Contains program loops for different integrators and barostats.

Most of the above modules and the main program file dlmesodpd.f90 are identical for both serial and parallel

versions of DL MESO DPD. The filenames for the serial versions of comms module and domain module end

with ser, but are referred to in the code by their standard names.

The module for many-body DPD interactions, manybody module, may be modified by users to incorporate

alternative schemes. Additional bond, angle and dihedral models can be added to bond module by the user,

although modifications to config module are also required to allow DL MESO to recognise new types of bond

interaction. For anything else, however, we recommend that DL MESO users put any self-defined subroutines

and functions into a module file called user module.f90 so future upgrades of DL MESO will not interfere with

their contributions.

13.2 DL MESO DPD Subroutines and Functions

13.2.1 Main program: dlmesodpd

Both the serial and parallel versions of the program operate in a similar way. Before DPD calculations start,

the following tasks are carried out:

� For parallel running only, MPI is started up (initcomms) and the node properties are determined.

� An I/O channel for the general OUTPUT file is opened.

� The system clock is consulted for a start time (timchk).

� The starting banner for DL MESO DPD is printed.

� System and bond data are read in and initialized (sysdef).

� Initial values are set (zero).

� The starting configuration is set up (start), either from scratch or specified by the user using a CONFIG

file.

� The system clock is consulted again for the start of the DPD calculation cycle (timchk).
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A loop for DPD calculations is then called from run module depending on the integrator and barostat selected

by the user. Each step of DPD calculations involves the following:

� The step counter nstep is increased.

� The system clock is checked (timchk).

� The first stage of the required integrator is used to update the motion of the particles and their positions.

� Masses and particle/molecule names are reassigned to the particles.

� The parallel link-cell structure is set up and the pairwise forces calculated (plcfor *).

� The time taken to calculate the forces is determined (timchk).

� The second stage of the integrator is applied to calculate the velocities at the end of the time step. This

may include e.g. recalculation of dissipative forces or resizing of the system for a barostat.

� Statistical properties for the system are calculated and, during equilibration, the particle velocities are

rescaled for the specified temperature (statis).

� After every nsbpo time steps, the system clock is consulted (timchk) and statistical data is printed to the

OUTPUT file (printout). If equilibration has come to an end, i.e. nstep = nseql, this is also reported

(equilout).

� If requested by the user, after every iscorr time steps statistical data is written to the CORREL file (corout)

and after every ntraj time steps trajectory data is saved to the HISTORY or HISTORY* file(s).

� The step time is calculated (timchk) and if the allocated time has expired, the job is closed down; otherwise

restart data is saved (revive).

After all the time steps have been calculated or the allocated time has elapsed:

� The final calculation summary is printed to the OUTPUT file (result).

� The duration of the calculation run is determined and printed (timchk).

� All remaining output channels (for OUTPUT, HISTORY* files) are closed.

� For parallel running only, MPI communications are closed down (exitcomms).

13.2.2 numeric container

This package contains general purpose functions which may be replaced with any suitable functions in Fortran90

standard libraries, as well as bookkeeping subroutines for the global/local particle number list.

duni

� Header records

REAL(KIND=dp) FUNCTION duni (idnode)

� Function

Creates a double precision random number between 0 and 1.

� Dependencies

None
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� Arguments

idnode input integer

duni output real(KIND=dp)

� Comments

The random number generator is an implementation of the Universal Random Number Generator[39].

The processor name idnode is used as a seed, which is activated the first time the function is called.

mtrnd

� Header records

REAL(KIND=dp) FUNCTION mtrnd (idnode)

� Function

Creates a double precision random number between 0 and 1.

� Dependencies

None

� Arguments

idnode input integer

mtrnd output real(KIND=dp)

� Comments

The random number generator is an implementation of the Mersenne Twister random number generator[42].

The processor name idnode is used as a seed, which is activated the first time the function is called.

gaussmp

� Header records

REAL(KIND=dp) FUNCTION gaussmp (idnode)

� Function

Creates a Gaussian random number.

� Dependencies

mtrnd

� Arguments

idnode input integer

gaussmp output real(KIND=dp)

� Comments

This is an implementation of the Marsaglia polar method[38] to convert linear random numbers (generated

by the Mersenne Twister method) to Gaussian random variables with zero mean and unity variance.

sclsum

� Header records

REAL(KIND=dp) FUNCTION sclsum (n, a, i)

� Function

Calculates the scalar sum of an array.

� Dependencies

None
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� Arguments

n input integer

a input array of real(KIND=dp)

i input integer

sclsum output real(KIND=dp)

erfcdp

� Header records

REAL(KIND=dp) FUNCTION erfcdp (x)

� Function

Calculates the complementary error function for x, erfc(x).

� Dependencies

None

� Arguments

x input real(KIND=dp)

erfcdp output real(KIND=dp)

� Comments

This approximation for the function is based on a Chebyshev polynomial fitting[22].

erfdp

� Header records

REAL(KIND=dp) FUNCTION erfdp (x)

� Function

Calculates the error function for x, erf(x).

� Dependencies

None

� Arguments

x input real(KIND=dp)

erfdp output real(KIND=dp)

� Comments

This approximation for the function is based on a Chebyshev polynomial fitting[22].

images

� Header records

SUBROUTINE images (dx, dy, dz, lx, ly, lz, shearx, sheary, shearz, sldx, sldy, sldz)

� Function

Calculates the minimum distance between two particles in a periodic orthogonal box, adjusting for Lees-

Edwards shear if necessary.

� Dependencies

None
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� Arguments

dx input/output real(KIND=dp)

dy input/output real(KIND=dp)

dz input/output real(KIND=dp)

lx input real(KIND=dp)

ly input real(KIND=dp)

lz input real(KIND=dp)

shearx input integer

sheary input integer

shearz input integer

sldx input real(KIND=dp)

sldy input real(KIND=dp)

sldz input real(KIND=dp)

13.2.3 comms module

This module is essential for parallel running and does not require detailed knowledge for its use: depending

on the version and implementation of MPI available, the user may wish to select between the lines USE MPI

and INCLUDE "mpif.h" for loading the necessary routines. The serial version of the comms module primarily

consists of dummy routines to satisfy the required calls in the rest of the code.

initcomms

� Header records

SUBROUTINE initcomms ()

� Function

Starts Message Passing Interface (MPI).

� Dependencies

None

exitcomms

� Header records

SUBROUTINE exitcomms ()

� Function

Closes Message Passing Interface (MPI) in a controlled manner.

� Dependencies

None

abortcomms

� Header records

SUBROUTINE abortcomms ()

� Function

Terminates Message Passing Interface (MPI).

� Dependencies

None
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gsync

� Header records

SUBROUTINE gsync ()

� Function

Pauses running until all processes are synchronized.

� Dependencies

None

global and

� Header records

SUBROUTINE global and (iii, nnn, nod, idnode)

� Function

Finds global logical AND from a Boolean array iii() of size nnn, placing the result on processor nod.

� Dependencies

None

� Arguments

iii input/output array of logical

nnn input integer

nod input integer

idnode input integer

� Comments

For Boolean scalars, the alternative SUBROUTINE global sca and (iii, nod, idnode) is available.

global and all

� Header records

SUBROUTINE global and all (iii, nnn)

� Function

Finds global logical AND from a Boolean array iii() of size nnn and broadcasts result to all processors.

� Dependencies

None

� Arguments

iii input/output array of logical

nnn input integer

� Comments

For Boolean scalars, the alternative SUBROUTINE global sca and all (iii) is available.

global sum dble

� Header records

SUBROUTINE global sum dble (aaa, nnn)

� Function

Globally sums double precision array aaa() of size nnn.
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� Dependencies

None

� Arguments

aaa input/output array of real(KIND=dp)

nnn input integer

� Comments

For double precision scalars, the alternative SUBROUTINE global sca sum dble (aaa) is available.

global sum int

� Header records

SUBROUTINE global sum int (iii, nnn)

� Function

Globally sums integer array iii() of size nnn.

� Dependencies

None

� Arguments

iii input/output array of integers

nnn input integer

� Comments

For integer scalars, the alternative SUBROUTINE global sca sum int (iii) is available.

global sca max dble

� Header records

SUBROUTINE global sca max dble (aaa)

� Function

Finds global maximum value of double precision number aaa.

� Dependencies

None

� Arguments

aaa input/output array of real(KIND=dp)

global sca max int

� Header records

SUBROUTINE global sca max int (iii)

� Function

Finds global maximum value of integer iii.

� Dependencies

None

� Arguments

iii input/output array of integers
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global sca min dble

� Header records

SUBROUTINE global sca min dble (aaa)

� Function

Finds global minimum value of double precision number aaa.

� Dependencies

None

� Arguments

aaa input/output array of real(KIND=dp)

global sca min int

� Header records

SUBROUTINE global sca min int (iii)

� Function

Finds global minimum value of integer iii.

� Dependencies

None

� Arguments

iii input/output array of integers

msg receive blocked

� Header records

SUBROUTINE msg receive blocked (msgtag, buf, length)

� Function

In a blocking call, receives data in the form of a double precision array buf().

� Dependencies

None

� Arguments

buf output array of real(KIND=dp)

msgtag input integer

length input integer

� Comments

For a double precision scalar, the alternative SUBROUTINE msg receive sca blocked (msgtag, buf,

length) is available.

msg receive unblocked

� Header records

INTEGER FUNCTION msg receive unblocked (msgtag, buf, length)

� Function

In a non-blocking call, receives data in the form of a double precision array buf().
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� Dependencies

None

� Arguments

buf output array of real(KIND=dp)

msgtag input integer

length input integer

msg receive unblocked output integer

� Comments

Since no scalars are received in non-blocking calls, no scalar version of this function exists.

msg send blocked

� Header records

SUBROUTINE msg send blocked (msgtag, buf, length, pe)

� Function

In a blocking call, send data from a double precision array buf().

� Dependencies

None

� Arguments

buf input array of real(KIND=dp)

msgtag input integer

length input integer

pe input integer

� Comments

For a double precision scalar, the alternative SUBROUTINE msg send sca blocked (msgtag, buf, length,

pe) is available.

msg wait

� Header records

SUBROUTINE msg wait (request)

� Function

Causes process to wait for an unblocked message.

� Dependencies

None

� Arguments

request input integer

mynode

� Header records

INTEGER FUNCTION mynode ()

� Function

Returns name of process.
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� Dependencies

None

� Arguments

mynode output integer

� Comments

The serial version of this function returns 0.

numnodes

� Header records

INTEGER FUNCTION numnodes ()

� Function

Returns total number of processes available.

� Dependencies

None

� Arguments

numnodes output integer

� Comments

The serial version of this function returns 1.

timchk

� Header records

SUBROUTINE timchk(ktim, time)

� Function

Determines the time elapsed since the start of the calculation run and, if ktim > 0, prints the time to the

OUTPUT file.

� Dependencies

None

� Arguments

ktim input integer

time output real(KIND=dp)

� Comments

The serial version of DL MESO DPD uses the generic SYSTEM CLOCK call, while the parallel version uses

MPI wtime.

13.2.4 error module

This module is used to print error messages and shut down DL MESO DPD in a controlled manner. It requires

the modules constants and comms module to be loaded beforehand.
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error

� Header records

SUBROUTINE error (idnode, iode, value)

� Function

Prints user-friendly error message in OUTPUT file and closes down DL MESO DPD.

� Dependencies

abortcomms

� Arguments

idnode input integer

iode input integer

value input integer

� Comments

The error code iode closes down DL MESO DPD when positive; negative values can be used to print

warning messages for non-fatal problems.

13.2.5 parse utils

getword

� Header records

CHARACTER(LEN=mxword) FUNCTION getword (txt, n)

� Function

Obtains the nth word from a line of text txt separated by spaces or commas.

� Dependencies

None

� Arguments

txt input character(LEN=*)

n input integer

getword output character(LEN=mxword)

parseint

� Header records

INTEGER(KIND=li) FUNCTION parseint (word)

� Function

Reads the integer contained in the string word.

� Dependencies

None

� Arguments

word input character(LEN=*)

parseint output integer(KIND=li)
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parsedble

� Header records

REAL(KIND=dp) FUNCTION parsedble (word)

� Function

Reads the double precision number contained in the string word.

� Dependencies

None

� Arguments

word input character(LEN=*)

parsedble output real(KIND=dp)

getint

� Header records

INTEGER(KIND=li) FUNCTION getint (txt, n)

� Function

Reads the nth ‘word’ of the string txt to obtain an integer.

� Dependencies

parseint

� Arguments

txt input character(LEN=*)

n input integer

getint output integer(KIND=li)

getdble

� Header records

REAL(KIND=dp) FUNCTION getdble (txt, n)

� Function

Reads the nth ‘word’ of the string txt to obtain a double precision number.

� Dependencies

parsedble

� Arguments

txt input character(LEN=*)

n input integer

getdble output real(KIND=dp)

lowercase

� Header records

SUBROUTINE lowercase (word)

� Function

Changes all upper case letters in the string word to lower case.

� Dependencies

None
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� Arguments

word input/output character(LEN=*)

n input integer

getdble output real(KIND=dp)

13.2.6 surface module

This module requires the variables module to be loaded beforehand.

surfacenodes

� Header records

SUBROUTINE surfacenodes

� Function

Identifies nodes containing surfaces or other boundary conditions.

� Dependencies

None

� Comments

If using Lees-Edwards boundary conditions, these are only applied after equilibration.

hardreflect

� Header records

SUBROUTINE hardreflect (k)

� Function

Applies boundary condition for hard reflecting walls: calculates short-range forces on particles when k=1,

applies bounce-back condition when k=2 for particles about to pass through boundary.

� Dependencies

surfacebounce

� Arguments

k input integer

� Comments

The boundary condition is given by [50]: the applied wall potential on each particle is given as

Uwall,i(z) =
1

2
Awall,i

(
1− z
zc

)2

for z < zc.

surfacebounce

� Header records

SUBROUTINE surfacebounce (ddd, vdd, sided)

� Function

Applies boundary condition on a leaving particle by means of specular reflection: move particle back into

system and invert velocity component normal to wall.
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� Dependencies

None

� Arguments

ddd input/output real(KIND=dp)

vdd input/output real(KIND=dp)

sided input real(KIND=dp)

� Comments

Momentum tangential to the boundary is preserved, i.e. this applies a free-slip boundary condition.

frozenbead

� Header records

SUBROUTINE frozenbead

� Function

Determines number of frozen particles required for boundary walls, given wall thickness and bead density,

and adjusts system dimensions and particle counts to accommodate them.

� Dependencies

None

� Comments

This routine is only called for new simulations (with or without a CONFIG file).

shearslide

� Header records

SUBROUTINE shearslide

� Function

Determines displacement of shearing boundary for Lees-Edwards boundary conditions.

� Dependencies

None

� Comments

The boundary condition is given by [34]. Displacement of boundaries only takes place after equilibration.

13.2.7 ewald module

This module requires the constant, variables, numeric container and comms module modules to be loaded

beforehand.

ewald real slater

� Header records

SUBROUTINE ewald real slater (nlimit)

� Function

Calculates real-space terms for Ewald summation with Slater-type (exponential decay) charge distribu-

tions.
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� Dependencies

erfcdp

� Arguments

nlimit input integer

� Comments

Calculates short-range Coulombic forces and potential energies for Ewald summation using the following

smeared (non-point) charge distribution[14]:

f(r) =
qβ3

πr3
c

exp

(
−2rβ

rc

)

ewald reciprocal

� Header records

SUBROUTINE ewald reciprocal

� Function

Calculates reciprocal-space terms for Ewald summation.

� Dependencies

None

� Comments

Calculates long-range Coulombic forces and potential energies using standard Ewald summation, including

self-energy corrections for charged systems.

ewald frozen slater

� Header records

SUBROUTINE ewald frozen slater

� Function

Calculates corrective forces, potential energies, virials and stress tensors to remove electrostatic interac-

tions between charged frozen particles in the Ewald summation.

� Dependencies

erfdp

images

� Comments

This routine uses a replicated data strategy to determine all electrostatic interactions between charged

frozen particles. If a simulation does not use a barostat, only one call prior to force calculations is required;

it otherwise has to be called whenever the simulation volume changes.

13.2.8 manybody module

This module requires pre-loading of the constants and variables modules.

local density

� Header records

SUBROUTINE local density
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� Function

Calculates local densities for many-body DPD interactions.

� Dependencies

weight rho

� Comments

Uses the parallel link-cell structure to calculate local densities for each component,

ρi =
∑
j 6=i

wρ(rij)

omitting self-contributions for each particle[66].

weight rho

� Header records

REAL(KIND=dp) FUNCTION weight rho (rrr)

� Function

Calculates normalized weight function for local densities.

� Dependencies

None

� Comments

The default weight function[68] is

wρ(r) =
15

2πr3
d

(
1− r

rd

)2

,

which may be changed by the user.

manybody force

� Header records

SUBROUTINE manybody force (i, j, k, rrr, mbforce)

� Function

Calculates many-body DPD interaction force and non-density-dependent potential energies between par-

ticles i and j using parameter set k and inter-particle distance rrr.

� Dependencies

None

� Arguments

i input integer

j input integer

k input integer

rrr input real(KIND=dp)

mbforce output real(KIND=dp)

� Comments

The default form for the many-body DPD interaction force is a two-term style suitable for modelling

vapour-liquid mixtures[68]:

~FCij =

[
Aij

(
1− rij

rc

)
+Bij(ρi + ρj)

(
1− rij

rd

)]
~rij
rij
.

This subroutine may be changed by users who wish to use different many-body interaction functional

forms.
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manybody potential

� Header records

SUBROUTINE manybody potential

� Function

Calculates the self-energy for every particle resulting from density-dependent (many-body) interactions.

� Dependencies

None

� Comments

The default form is based on the two-term vapour-liquid interactions used for many-body forces[68],

although only the density-dependent potential energies are calculated using this routine (the rest are

calculated in manybody force). Users may wish to modify this routine to use their own many-body

interaction models.

13.2.9 bond module

This module requires the modules constants, variables, error module, comms module and numeric container

to be loaded beforehand.

shellsort list

� Header records

SUBROUTINE shellsort list

� Function

Reorders the global/local particle number list (in terms of global particle number) using a Shell sort.

� Dependencies

None

search list

� Header records

INTEGER FUNCTION search list (aim)

� Function

Determines the index for the global/local particle number list for a specified global particle number aim

using a binary search.

� Dependencies

None

� Arguments

aim input integer

search list output integer

� Comments

This function returns a negative value if the global particle number cannot be found in the list. If it is

not the only entry for the global particle number, the function returns the index plus the value of nlist

(number of list items) to flag up duplicate entries.
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duplicate

� Header records

SUBROUTINE duplicate (global1, global2, ind1, ind2)

� Function

Determines the indices out of duplicate entries from the global/local particle number list for a pair of

specified global particle numbers, global1 and global2, that produce the shortest distance between the

particles.

� Dependencies

None

� Arguments

global1 input integer

global2 input integer

ind1 input/output integer

ind2 input/output integer

contract bndtbl

� Header records

SUBROUTINE contract bndtbl

� Function

Strips out all bond pairs from bond table that have been reassigned to neighbouring processors.

� Dependencies

None

� Comments

Only called for parallel version of DL MESO DPD when bond tables include only local bonds in each

processor.

contract angtbl

� Header records

SUBROUTINE contract angtbl

� Function

Strips out all bond angle triples from angle table that have been reassigned to neighbouring processors.

� Dependencies

None

� Comments

Only called for parallel version of DL MESO DPD when angle tables include only local angles in each

processor.

contract dhdtbl

� Header records

SUBROUTINE contract dhdtbl
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� Function

Strips out all bond dihedral quadruples from dihedral table that have been reassigned to neighbouring

processors.

� Dependencies

None

� Comments

Only called for parallel version of DL MESO DPD when dihedral tables include only local dihedrals in

each processor.

bond force

� Header records

SUBROUTINE bond force (bondtype, r, a, b, c, d, force, potential)

� Function

Determines the stretching force and potential energy between a pair of bonded particles.

� Dependencies

None

� Arguments

bondtype input integer

r input real(KIND=dp)

a input real(KIND=dp)

b input real(KIND=dp)

c input real(KIND=dp)

d input real(KIND=dp)

force output real(KIND=dp)

potential output real(KIND=dp)

� Comments

If required, the user can add extra stretching bond interaction types in this subroutine as additional cases:

this would also require changes to read control in config module.

angle force

� Header records

SUBROUTINE angle force (angtype, theta, rab, rcb, a, b, c, d, force, potential, virial, dfab,

dfcb)

� Function

Determines the bond angle force, potential energy and virial across a triple of bonded particles.

� Dependencies

None
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� Arguments

angtype input integer

theta input real(KIND=dp)

rab input real(KIND=dp)

rcb input real(KIND=dp)

a input real(KIND=dp)

b input real(KIND=dp)

c input real(KIND=dp)

d input real(KIND=dp)

force output real(KIND=dp)

potential output real(KIND=dp)

virial output real(KIND=dp)

dfab output real(KIND=dp)

dfcb output real(KIND=dp)

� Comments

If required, the user can add extra bond angle interaction types in this subroutine as additional cases:

this would also require changes to read control in config module.

dihedral force

� Header records

SUBROUTINE dihedral force (dhdtype, phi, pb, pc, a, b, c, d, force, potential)

� Function

Determines the bond dihedral force and potential energy across a quadruple of bonded particles.

� Dependencies

None

� Arguments

dhdtype input integer

phi input real(KIND=dp)

pb input real(KIND=dp)

pc input real(KIND=dp)

a input real(KIND=dp)

b input real(KIND=dp)

c input real(KIND=dp)

d input real(KIND=dp)

force output real(KIND=dp)

potential output real(KIND=dp)

� Comments

If required, the user can add extra bond dihedral (and improper dihedral) interaction types in this sub-

routine as additional cases: this would also require changes to read control in config module.

bondforceslocal

� Header records

SUBROUTINE bondforceslocal

� Function

Calculates all bond (stretching, angle, dihedral) forces between particles in system using locally-defined

bond lists.
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� Dependencies

shellsort list

search list

duplicate

error

global sca and

bond force

angle force

dihedral force

� Comments

Assumes that bond lists contain only those bonds in the current node. This is the most efficient method

for parallel running but runs the risk of losing track of bonded pairs if bond lengths get longer than the

subdomain halo size rhalo.

bondforcesglobal

� Header records

SUBROUTINE bondforcesglobal

� Function

Calculates all bond (stretching, angle, dihedral) forces between particles in system using globally-defined

bond lists.

� Dependencies

shellsort list

search list

images

error

global sum dble

global sca and

bond force

angle force

dihedral force

� Comments

Assumes that bond lists contain all bonds in the entire system. This is less efficient for parallel running

than only calculating the bonds in each node but ensures longer bond lengths can be accommodated.

13.2.10 domain module

This module requires the modules constants, variables, error module, comms module (if running parallel

version) and bond module (if running parallel version) to be loaded beforehand.

domain decompose

� Header records

SUBROUTINE domain decompose

� Function

Determines 3D domain decomposition for system: number of nodes in each direction, location for each

node in system, nearest neighbouring nodes.
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� Dependencies (parallel version only)

msg receive blocked

msg receive sca blocked

msg send blocked

msg send sca blocked

� Comments

Essential for parallel version of DL MESO DPD; the serial version of this subroutine sets values for a

single processor.

domain dimensions

� Header records

SUBROUTINE domain dimensions

� Function

Determines dimensions of domain and link cells

� Dependencies

None

� Comments

This subroutine is called during setup and, if a barostat is used, when the volume of the system changes.

parlnk

� Header records

SUBROUTINE parlnk (num1, num2)

� Function

Constructs the parallel link cells for calculations of pairwise forces between particles.

� Dependencies

None

� Arguments

num1 input integer

num2 input integer

� Comments

Pairwise electrostatic forces typically act over longer lengthscales between charged particles only and are

not considered using this subroutine: a similar routine for the real-space part of Ewald summation is

included in ewald real.

deport

� Header records

SUBROUTINE deport (nlimit, mdir, mp, begin, final, shove, skip)

� Function

Deports particles from boundary halo to neighbouring domain.

� Dependencies

contract bndtbl

contract angtbl
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contract dhdtbl

error

global sca and all

msg receive unblocked

msg receive sca blocked

msg send blocked

msg send sca blocked

msg wait

� Arguments

nlimit input/output integer

mdir input integer

mp input integer

begin input real(KIND=dp)

final input real(KIND=dp)

shove input real(KIND=dp)

skip input logical

� Comments

Only exists in parallel version of DL MESO DPD. The switch skip prevents particles in the boundary

halo of the current domain from being transferred: this is useful for applying non-periodic boundary

conditions (e.g. hard surfaces, Lees-Edwards shearing).

deport shear

� Header records

SUBROUTINE deport shear (nlimit, mdir, begin, final, shove, shove1, shove2, vshove1, vshove2,

side1, side2)

� Function

Deports particles from boundary halo to appropriate domains for Lees-Edwards shearing.

� Dependencies

contract bndtbl

contract angtbl

contract dhdtbl

error

msg receive unblocked

msg receive sca blocked

msg send blocked

msg send sca blocked

msg wait

� Arguments
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nlimit input/output integer

mdir input integer

begin input real(KIND=dp)

final input real(KIND=dp)

shove input real(KIND=dp)

shove1 input real(KIND=dp)

shove2 input real(KIND=dp)

vshove1 input real(KIND=dp)

vshove2 input real(KIND=dp)

side1 input real(KIND=dp)

side2 input real(KIND=dp)

� Comments

Only exists in parallel version of DL MESO DPD. This routine requires information for the two dimensions

along the surface of the shearing boundary: the variables shove1 and shove2 represent the displacement

due to shear, side1 and side2 are the domain dimensions and vshove1 and vshove2 are the velocity

corrections to particles passing through the shearing boundary.

import

� Header records

SUBROUTINE import (nlimit, mdir, mp, begin, final, shove, skip)

� Function

Imports particle forces from boundary halo for integration schemes and thermostats that only require one

set of forces to be calculated.

� Dependencies

error

global sca and all

msg receive unblocked

msg receive sca blocked

msg send blocked

msg send sca blocked

msg wait

� Arguments

nlimit input/output integer

mdir input integer

mp input integer

begin input real(KIND=dp)

final input real(KIND=dp)

shove input real(KIND=dp)

skip input logical

� Comments

Only exists in parallel version of DL MESO DPD. This routine is suitable for thermostats using the

standard Velocity Verlet algorithm for force integration and one set of forces: this includes the DPD

thermostat with MD integration (MD-VV), the Lowe-Andersen and Peters thermostats. The switch skip

prevents the importing of forces from the boundary halo of the current domain: this is useful for applying

non-periodic boundary conditions (e.g. hard surfaces, Lees-Edwards shearing).



192 CHAPTER 13. DL MESO DPD PACKAGE REFERENCE

import shear

� Header records

SUBROUTINE import shear (nlimit, mdir, begin, final, shove, shove1, shove2, side1, side2)

� Function

Imports particle forces from boundary halos for integration schemes and thermostats that only require

one set of forces to be calculated and Lees-Edwards shearing.

� Dependencies

error

msg receive unblocked

msg receive sca blocked

msg send blocked

msg send sca blocked

msg wait

� Arguments

nlimit input/output integer

mdir input integer

begin input real(KIND=dp)

final input real(KIND=dp)

shove input real(KIND=dp)

shove1 input real(KIND=dp)

shove2 input real(KIND=dp)

side1 input real(KIND=dp)

side2 input real(KIND=dp)

� Comments

Only exists in parallel version of DL MESO DPD. This routine is suitable for thermostats using the

standard Velocity Verlet algorithm for force integration and one set of forces: this includes the DPD

thermostat with MD integration (MD-VV), the Lowe-Andersen and Peters thermostats. This routine

requires information for the two dimensions along the surface of the shearing boundary: the variables

shove1 and shove2 represent the displacement due to shear, while side1 and side2 are the domain

dimensions.

importvariable

� Header records

SUBROUTINE importvariable (nlimit, mdir, mp, begin, final, shove, first, skip)

� Function

Imports particle forces from boundary halo for integration schemes and thermostats that require two

separate sets of forces to be calculated.

� Dependencies

error

global sca and all

msg receive unblocked

msg receive sca blocked

msg send blocked

msg send sca blocked

msg wait
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� Arguments

nlimit input/output integer

mdir input integer

mp input integer

begin input real(KIND=dp)

final input real(KIND=dp)

shove input real(KIND=dp)

first input logical

skip input logical

� Comments

Only exists in parallel version of DL MESO DPD. Setting first to .true. imports both sets of forces

(constant and variable), while setting to .false. imports just the variable forces. This routine is suitable

for thermostats where two types of forces need to be kept separate and/or recalculated, i.e. the DPD

thermostat with DPD Velocity Verlet integration (DPD-VV) and Stoyanov-Groot thermostat. The switch

skip ignores any particles in halos for non-periodic boundary conditions (e.g. hard surfaces, Lees-Edwards

shearing).

importvariable shear

� Header records

SUBROUTINE importvariable shear (nlimit, mdir, begin, final, shove, shove1, shove2, side1,

side2)

� Function

Imports particle forces from boundary halos for integration schemes and thermostats that require two

separate sets of forces to be calculated and Lees-Edwards shearing.

� Dependencies

error

msg receive unblocked

msg receive sca blocked

msg send blocked

msg send sca blocked

msg wait

� Arguments

nlimit input/output integer

mdir input integer

begin input real(KIND=dp)

final input real(KIND=dp)

shove input real(KIND=dp)

shove1 input real(KIND=dp)

shove2 input real(KIND=dp)

side1 input real(KIND=dp)

side2 input real(KIND=dp)

� Comments

Only exists in parallel version of DL MESO DPD. Setting first to .true. imports both sets of forces

(constant and variable), while setting to .false. imports just the variable forces. This routine is suitable

for thermostats where two types of forces need to be kept separate and/or recalculated, i.e. the DPD

thermostat with DPD Velocity Verlet integration (DPD-VV) and Stoyanov-Groot thermostat. This rou-

tine requires information for the two dimensions along the surface of the shearing boundary: the variables
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shove1 and shove2 represent the displacement due to shear, while side1 and side2 are the domain

dimensions.

importdensity

� Header records

SUBROUTINE importdensity (nlimit, mdir, mp, begin, final)

� Function

Imports local densities from boundary halo.

� Dependencies

error

global sca and all

msg receive unblocked

msg receive sca blocked

msg send blocked

msg send sca blocked

msg wait

� Arguments

nlimit input/output integer

mdir input integer

mp input integer

begin input real(KIND=dp)

final input real(KIND=dp)

shove input real(KIND=dp)

� Comments

Only exists in parallel version of DL MESO DPD.

importdensity shear

� Header records

SUBROUTINE importdensity shear (nlimit, mdir, begin, final, shove, shove1, shove2, side1,

side2)

� Function

Imports local densities from boundary halos for Lees-Edwards shearing.

� Dependencies

error

msg receive unblocked

msg receive sca blocked

msg send blocked

msg send sca blocked

msg wait
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� Arguments

nlimit input/output integer

mdir input integer

begin input real(KIND=dp)

final input real(KIND=dp)

shove input real(KIND=dp)

shove1 input real(KIND=dp)

shove2 input real(KIND=dp)

side1 input real(KIND=dp)

side2 input real(KIND=dp)

� Comments

Only exists in parallel version of DL MESO DPD. This routine requires information for the two dimensions

along the surface of the shearing boundary: the variables shove1 and shove2 represent the displacement

due to shear, while side1 and side2 are the domain dimensions.

export

� Header records

SUBROUTINE export (nlimit, mdir, mp, begin, final, shove, skip) (Parallel version)

SUBROUTINE export (nlimit, mdir, begin, final, shove) (Serial version)

� Function

Exports particle data (positions, velocity) to neighbouring domain as boundary halo.

� Dependencies

error

global sca and all (Parallel version only)

msg receive unblocked (Parallel version only)

msg receive sca blocked (Parallel version only)

msg send blocked (Parallel version only)

msg send sca blocked (Parallel version only)

msg wait (Parallel version only)

� Arguments

nlimit input/output integer

mdir input integer

mp input integer

begin input real(KIND=dp)

final input real(KIND=dp)

shove input real(KIND=dp)

skip input logical

� Comments

The switch skip (in the parallel version only) prevents particles in the boundary halo of the current

domain from being transferred for non-periodic boundary conditions (e.g. hard surfaces, Lees-Edwards

shearing).

export shear

� Header records

SUBROUTINE export shear (nlimit, mdir, begin, final, shove, shove1, shove2, side1, side2)
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� Function

Exports particle data (positions, velocity) to appropriate domains as boundary halos for Lees-Edwards

shearing.

� Dependencies

error

msg receive unblocked (Parallel version only)

msg receive sca blocked (Parallel version only)

msg send blocked (Parallel version only)

msg send sca blocked (Parallel version only)

msg wait (Parallel version only)

� Arguments

nlimit input/output integer

mdir input integer

begin input real(KIND=dp)

final input real(KIND=dp)

shove input real(KIND=dp)

shove1 input real(KIND=dp)

shove2 input real(KIND=dp)

side1 input real(KIND=dp)

side2 input real(KIND=dp)

� Comments

This routine requires information for the two dimensions along the surface of the shearing boundary: the

variables shove1 and shove2 represent the displacement due to shear, while side1 and side2 are the

domain dimensions.

exportvelocity

� Header records

SUBROUTINE exportvelocity (nlimit, mdir, mp, begin, final, shove, skip) (Parallel version)

SUBROUTINE exportvelocity (nlimit, mdir, begin, final) (Serial version)

� Function

Exports particle velocities to neighbouring domain as boundary halo for recalculation of dissipative forces

(as required for DPD Velocity Verlet algorithm).

� Dependencies

error

global sca and all (Parallel version only)

msg receive unblocked (Parallel version only)

msg receive sca blocked (Parallel version only)

msg send blocked (Parallel version only)

msg send sca blocked (Parallel version only)

msg wait (Parallel version only)

� Arguments
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nlimit input/output integer

mdir input integer

mp input integer

begin input real(KIND=dp)

final input real(KIND=dp)

shove input real(KIND=dp)

skip input logical

� Comments

In serial running, this routine can automatically deal with non-periodic boundary conditions. The switch

skip (in the parallel version only) prevents particles in the boundary halo of the current domain from

being transferred for non-periodic boundary conditions (e.g. hard surfaces, Lees-Edwards shearing).

exportvelocity shear

� Header records

SUBROUTINE exportvelocity shear (nlimit, mdir, begin, final, shove, shove1, shove2, side1,

side2)

� Function

Exports particle velocities to appropriate domains as boundary halo for recalculation of dissipative forces

(as required for DPD Velocity Verlet algorithm) with Lees-Edwards shearing.

� Dependencies

error

msg receive unblocked

msg receive sca blocked

msg send blocked

msg send sca blocked

msg wait

� Arguments

nlimit input/output integer

mdir input integer

begin input real(KIND=dp)

final input real(KIND=dp)

shove input real(KIND=dp)

shove1 input real(KIND=dp)

shove2 input real(KIND=dp)

side1 input real(KIND=dp)

side2 input real(KIND=dp)

� Comments

Only exists in parallel version of DL MESO DPD. This routine requires information for the two dimensions

along the surface of the shearing boundary: the variables shove1 and shove2 represent the displacement

due to shear, while side1 and side2 are the domain dimensions.

exportdensity

� Header records

SUBROUTINE exportdensity (nlimit, mdir, mp, begin, final, shove) (Parallel version)

SUBROUTINE exportdensity (nlimit, mdir, begin, final) (Serial version)
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� Function

Exports particle data (local densities) to neighbouring domain as boundary halo for calculation of many-

body DPD interaction forces.

� Dependencies

error

global sca and all (Parallel version only)

msg receive unblocked (Parallel version only)

msg receive sca blocked (Parallel version only)

msg send blocked (Parallel version only)

msg send sca blocked (Parallel version only)

msg wait (Parallel version only)

� Arguments

nlimit input/output integer

mdir input integer

mp input integer

begin input real(KIND=dp)

final input real(KIND=dp)

shove input real(KIND=dp)

skip input logical

� Comments

In serial running, this routine can automatically deal with non-periodic boundary conditions. The switch

skip (in the parallel version only) prevents particles in the boundary halo of the current domain from

being transferred for non-periodic boundary conditions (e.g. hard surfaces, Lees-Edwards shearing).

exportdensity shear

� Header records

SUBROUTINE exportdensity shear (nlimit, mdir, mp, begin, final, shove, skip) (Parallel ver-

sion)

SUBROUTINE exportdensity (nlimit, mdir, begin, final) (Serial version)

� Function

Exports particle data (local densities) to neighbouring domain as boundary halo for calculation of many-

body DPD interaction forces.

� Dependencies

error

msg receive unblocked

msg receive sca blocked

msg send blocked

msg send sca blocked

msg wait

� Arguments
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nlimit input/output integer

mdir input integer

begin input real(KIND=dp)

final input real(KIND=dp)

shove input real(KIND=dp)

shove1 input real(KIND=dp)

shove2 input real(KIND=dp)

side1 input real(KIND=dp)

side2 input real(KIND=dp)

� Comments

Only exists in parallel version of DL MESO DPD. This routine requires information for the two dimensions

along the surface of the shearing boundary: the variables shove1 and shove2 represent the displacement

due to shear, while side1 and side2 are the domain dimensions.

deportdata

� Header records

SUBROUTINE deportdata (nlimit)

� Function

Applies deport of particles from boundary halos to neighbouring domains and/or periodic boundary

conditions.

� Dependencies

deport (Parallel version only)

� Arguments

nlimit input/output integer

deportdata shear

� Header records

SUBROUTINE deportdata shear (nlimit)

� Function

Applies deport of particles from boundary halos to neighbouring domains and/or periodic boundary

conditions with Lees-Edwards shearing.

� Dependencies

deport (Parallel version only)

deport shear (Parallel version only)

� Arguments

nlimit input/output integer

importdata

� Header records

SUBROUTINE importdata (nlimit)

� Function

Applies import of particle forces from boundary halos of neighbouring domains and/or across periodic

boundary conditions.
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� Dependencies

import (Parallel version only)

� Arguments

nlimit input/output integer

� Comments

This subroutine is applicable for integrators/thermostats using single sets of particle forces (i.e. standard

Velocity Verlet, Lowe-Andersen, Peters).

importdata shear

� Header records

SUBROUTINE importdata shear (nlimit)

� Function

Applies import of particle forces from boundary halos of neighbouring domains and/or across periodic

boundary conditions with Lees-Edwards shearing.

� Dependencies

import (Parallel version only)

import shear (Parallel version only)

� Arguments

nlimit input/output integer

� Comments

This subroutine is applicable for integrators/thermostats using single sets of particle forces (i.e. standard

Velocity Verlet, Lowe-Andersen, Peters).

importdata dpdvv1

� Header records

SUBROUTINE importdata dpdvv1 (nlimit)

� Function

Applies import of particle forces (constant and variable) from boundary halos of neighbouring domains

and/or across periodic boundary conditions for the DPD Velocity Verlet algorithm.

� Dependencies

importvariable (Parallel version only)

� Arguments

nlimit input/output integer

importdata dpdvv1 shear

� Header records

SUBROUTINE importdata dpdvv1 shear (nlimit)

� Function

Applies import of particle forces (constant and variable) from boundary halos of neighbouring domains

and/or across periodic boundary conditions for the DPD Velocity Verlet algorithm with Lees-Edwards

shearing.
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� Dependencies

importvariable (Parallel version only)

importvariable shear (Parallel version only)

� Arguments

nlimit input/output integer

importdata dpdvv2

� Header records

SUBROUTINE importdata dpdvv2 (nlimit)

� Function

Applies import of variable particle forces from boundary halos of neighbouring domains and/or across

periodic boundary conditions for the DPD Velocity Verlet algorithm.

� Dependencies

importvariable (Parallel version only)

� Arguments

nlimit input/output integer

importdata dpdvv2 shear

� Header records

SUBROUTINE importdata dpdvv2 shear (nlimit)

� Function

Applies import of variable particle forces from boundary halos of neighbouring domains and/or across

periodic boundary conditions for the DPD Velocity Verlet algorithm with Lees-Edwards shearing.

� Dependencies

importvariable (Parallel version only)

importvariable shear (Parallel version only)

� Arguments

nlimit input/output integer

importdata stoyanov

� Header records

SUBROUTINE importdata stoyanov (nlimit)

� Function

Applies import of particle forces (constant and variable) from boundary halos of neighbouring domains

and/or across periodic boundary conditions for the Stoyanov-Groot thermostat.

� Dependencies

importvariable (Parallel version only)

� Arguments

nlimit input/output integer
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importdata stoyanov shear

� Header records

SUBROUTINE importdata stoyanov shear (nlimit)

� Function

Applies import of particle forces (constant and variable) from boundary halos of neighbouring domains

and/or across periodic boundary conditions for the Stoyanov-Groot thermostat with Lees-Edwards shear-

ing.

� Dependencies

importvariable (Parallel version only)

importvariable shear (Parallel version only)

� Arguments

nlimit input/output integer

importdensitydata

� Header records

SUBROUTINE importdensitydata (nlimit)

� Function

Applies import of local densities for particles from boundary halos of neighbouring domains and/or across

periodic boundary conditions.

� Dependencies

importdensity (Parallel version only)

� Arguments

nlimit input/output integer

� Comments

This subroutine is essential for DPD calculations involving many-body (density dependent) interactions.

importdensitydata shear

� Header records

SUBROUTINE importdensitydata shear (nlimit)

� Function

Applies import of local densities for particles from boundary halos of neighbouring domains and/or across

periodic boundary conditions with Lees-Edwards shearing.

� Dependencies

importdensity (Parallel version only)

importdensity shear (Parallel version only)

� Arguments

nlimit input/output integer

� Comments

This subroutine is essential for DPD calculations involving many-body (density dependent) interactions.
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exportdata

� Header records

SUBROUTINE exportdata (nlimit)

� Function

Applies export of particle properties (positions, velocities) to boundary halos of neighbouring domains

and/or across periodic boundary conditions.

� Dependencies

export

� Arguments

nlimit input/output integer

� Comments

Non-periodic boundaries either do not require boundary halos or require them to be constructed differently:

these are thus excluded from the export of particle properties.

exportdata shear

� Header records

SUBROUTINE exportdata shear (nlimit)

� Function

Applies export of particle properties (positions, velocities) to boundary halos of neighbouring domains

and/or across periodic boundary conditions with Lees-Edwards shearing.

� Dependencies

export

export shear

� Arguments

nlimit input/output integer

exportvelocitydata

� Header records

SUBROUTINE exportvelocitydata (nlimit)

� Function

Applies export of particle velocities to boundary halos of neighbouring domains and/or across periodic

boundary conditions for recalculation of dissipative forces.

� Dependencies

exportvelocity

� Arguments

nlimit input/output integer

� Comments

Non-periodic boundaries either do not require boundary halos or require them to be constructed differently:

these are thus excluded from the export of particle velocities.
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exportvelocitydata shear

� Header records

SUBROUTINE exportvelocitydata shear (nlimit)

� Function

Applies export of particle velocities to boundary halos of neighbouring domains and/or across periodic

boundary conditions with Lees-Edwards shearing for recalculation of dissipative forces.

� Dependencies

exportvelocity

exportvelocity shear (Parallel version only)

� Arguments

nlimit input/output integer

exportdensitydata

� Header records

SUBROUTINE exportdensitydata (nlimit)

� Function

Applies export of local densities for particles to boundary halos of neighbouring domains and/or across

periodic boundary conditions for calculation of many-body DPD interaction forces.

� Dependencies

exportdensity

� Arguments

nlimit input/output integer

� Comments

Non-periodic boundaries do not require boundary halos: these are excluded from the export of particle

local densities.

exportdensitydata shear

� Header records

SUBROUTINE exportdensitydata shear (nlimit)

� Function

Applies export of local densities for particles to boundary halos of neighbouring domains and/or across

periodic boundary conditions with Lees-Edwards shearing for calculation of many-body DPD interaction

forces.

� Dependencies

exportdensity

exportdensity shear (Parallel version only)

� Arguments

nlimit input/output integer

13.2.11 start module

This module requires the modules constants, variables, error module, comms module, numeric container,

parse utils, ewald module and surface module to be loaded beforehand.
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start

� Header records

SUBROUTINE start

� Function

Sets up starting configuration for DPD calculations, depending on availablity of CONFIG or restart files.

� Dependencies

initialize

revive

read config

initialvelocity

ewald frozen slater

initialize

� Header records

SUBROUTINE initialize

� Function

Sets up starting configuration for DPD calculations without given initial or restart configuration.

� Dependencies

global sca and

error

duni

mtrnd

global sum int

� Comments

This routine assigns frozen bead walls and other unbonded beads as cubic lattices: the latter may be

incomplete and species of unbonded beads are randomly assigned according to the numbers specified in

the FIELD file. No duplication of system using nfold is assumed.

revive

� Header records

SUBROUTINE revive (key)

� Function

Saves and reads restart configurations.

� Dependencies

export* files (if reading restart configuration)

� Arguments

key input integer

� Comments

No duplication of system using nfold is assumed when reading restart files: if this is required, a CONFIG

file should be created and used instead.
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read config

� Header records

SUBROUTINE read config

� Function

Reads initial system configuration (positions, velocities, forces) from DL POLY-style CONFIG file and

assigns particles, bonds etc. to system, accounting for system duplication using nfold.

� Dependencies

CONFIG file

getword

getint

getdble

initialvelocity

global sca and

global sum sca int

error

� Comments

The number of particles in the CONFIG file must match up with the number described in the corresponding

FIELD file, as should any molecule and bond information. The periodic boundary key imcon[65] is ignored,

since all DL MESO systems are orthorhombic. This routine also adds any required frozen bead walls as

cubic lattices. No checks are made to ensure molecules do not cross non-periodic boundaries!

initialvelocity

� Header records

SUBROUTINE initialvelocity

� Function

Initializes particle velocities randomly in system to give required system temperature.

� Dependencies

duni

global sum dble

sort beads

� Header records

SUBROUTINE sort beads

� Function

Re-orders local identity numbers of beads in current processor to place frozen beads at beginning of list.

� Comments

Frozen beads are moved to local bead numbers between 1 and nfbeads, while non-frozen beads are moved

to local bead numbers between nfbeads+1 and nbeads.

13.2.12 config module

This module requires the modules constants, variables, comms module, numeric container, parse utils,

domain module and surface module to be loaded beforehand.
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sysdef

� Header records

SUBROUTINE sysdef

� Function

Reads in system data, determines simulation properties, prints to OUTPUT file and allocates main arrays

for calculations.

� Dependencies

scan config

read control

scan field

read field

frozenbead

domain decompose

domain dimensions

surfacenodes

elecgen

error

� Arguments

None

� Comments

The routine calculates a maximum size for the main arrays (maxdim) and a maximum number of pairwise

interactions (maxpair) based on the total number of particles, the number of link cells and number of

nodes.

scan config

� Header records

SUBROUTINE scan config

� Function

Scans CONFIG file for dimensions of system unit cell.

� Dependencies

CONFIG file

getint

getdble

global sca and

error

� Arguments

None

read control

� Header records

SUBROUTINE read control

� Function

Reads in system data from CONTROL file.
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� Dependencies

CONTROL file

getdble

getint

getword

lowercase

error

global sca and

� Arguments

None

scan field

� Header records

SUBROUTINE scan field

� Function

Scans FIELD file for numbers of interactions, species etc. and sets up arrays for all interaction data

(including bonds)

� Dependencies

FIELD file

error

global sca and

getword

lowercase

getint

getdble

� Arguments

None

read field

� Header records

SUBROUTINE read field

� Function

Reads in all species and interactions from FIELD file, including bonded interactions and molecule config-

urations

� Dependencies

FIELD file

getdble

getint

getword

lowercase

error

global sca and

� Arguments

None
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� Comments

This routine will determine interaction parameters for species pairs not specified in FIELD file unless any

interactions are many-body DPD (this requires all interaction species pairs to be specified).

elecgen

� Header records

SUBROUTINE elecgen

� Function

Sets up electrostatic parameters for self-interaction and charged system corrections.

� Dependencies

error

global sca and

zero

� Header records

SUBROUTINE zero

� Function

Sets step counters, initial time parameters, system parameters, accumulators for statistical properties and

long-range potential corrections to zero, initializes random number generators.

� Dependencies

duni

mtrnd

13.2.13 field module

This module requires the modules constants, variables, bond module, manybody module, ewald module,

surface module, numeric container and domain module to be loaded beforehand.

Different versions of each subroutine are available in this module for different integrators and/or thermostats:

� DPD thermostat with standard (molecular dynamics) Velocity Verlet integration (MD-VV)[67] (mdvv)

� DPD thermostat with DPD Velocity Verlet integration (DPD-VV)[3] (dpdvv)

� Lowe-Andersen thermostat[36] (lowe)

� Peters thermostat[47] (peters)

� Stoyanov-Groot thermostat[62] (stoyanov)

forces *

� Header records

SUBROUTINE forces * (nlimit)

� Function

Calculates all forces between particles, particularly pairwise forces within cut-off radius.
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� Dependencies

mtrnd (duni, gaussmp)

manybody force

manybody potential

ewald real

ewald reciprocal

bondforcesglobal

bondforceslocal

hardreflect

� Arguments

nlimit input integer

� Comments

DPD random forces are calculated using a uniform random number generator[16] (by default the Mersenne

twister generator mtrnd), i.e.

ζij ≈
√

12 (u− 0.5) ,

which produces statistically similar results[10] and is computationally more efficient than using the Gaus-

sian random number subroutine gaussmp, although this or the duni random number generator may be

substituted if required. For systems involving Lees-Edwards boundary conditions, thermostats are not

applied between particle pairs that cross shearing boundaries[5].

dragforces dpdvv

� Header records

SUBROUTINE dragforces dpdvv (nlimit)

� Function

Recalculates dissipative forces between particles within cut-off radius.

� Dependencies

None.

� Arguments

nlimit input integer

idnode input integer

� Comments

Only required for DPD Velocity Verlet (DPD-VV) integration. Particle pairs that cross Lees-Edwards

shearing boundaries are omitted[5].

plcfor *

� Header records

SUBROUTINE plcfor *

� Function

Sets up parallel link-cells structure and calculates forces (including those involving particles in boundary

halo).

� Dependencies

exportdata

parlnk

local density
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importdensitydata

exportdensitydata

forces *

importdata (importdata dpdvv1, importdata dpdvv2, importdata stoyanov)

freeze beads

freeze beads

� Header records

SUBROUTINE freeze beads

� Function

Quenches forces and velocities of frozen particles by resetting them to zero.

� Dependencies

None.

13.2.14 integrate module

This module requires preloading of the constants, variables, domain module, surface module, comms module,

error module, numeric container and field module modules. Like the field module, different versions of

the subroutine (mdvv, dpdvv, lowe, peters, stoyanov) are available for each thermostat/integrator.

verlet *

� Header records

SUBROUTINE verlet * (stage)

� Function

Solves the equations of motion using the Velocity Verlet scheme[67].

� Dependencies

hardreflect

deportdata

error

exportvelocitydata (DPD-VV only)

dragforces dpdvv (DPD-VV only)

importforcedata (DPD-VV only)

global sca sca int

global sca sca dble

global sum int (Lowe, Peters, Stoyanov)

� Arguments

stage input integer

� Comments

All versions of this subroutine use the standard Velocity Verlet algorithm to integrate the equations

d~vi
dt

=
~Fi
mi

d~ri
dt

= ~vi

Both the MD-VV and DPD-VV algorithms use dissipative and random forces as the thermostat, with

the DPD-VV algorithm repeating the calculation of dissipative forces at the end of the time step. The

Lowe-Andersen, Peters and Stoyanov-Groot thermostats are applied after all other forces are integrated.
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verlet * lang

� Header records

SUBROUTINE verlet * lang (stage)

� Function

Solves the equations of motion using the Velocity Verlet scheme coupled with a Langevin barostat[29].

� Dependencies

hardreflect

deportdata

frozenbead

error

exportvelocitydata (DPD-VV only)

dragforces dpdvv (DPD-VV only)

importforcedata (DPD-VV only)

global sca sca int

global sca sca dble

global sum dble

global sum int (Lowe, Peters, Stoyanov)

� Arguments

stage input integer

� Comments

The Langevin barostat is configured to apply the following piston force (rate of change of momentum) in

dimension α

ṗg,α = V (Pα − P0) +
1

Nf

∑
i

miv
2
i − γppg,α + σpζp,α∆t−

1
2

with the option of keeping the system isotropic by using equal values of Pα and ζp,α for all dimensions.

(This may be switched off if imposing constant surface tensions at given planar surfaces.) Rescaling of

the simulation volume takes place in the first stage coupled with the integration of particle forces, while

iteration of the barostat force to achieve convergence of particle velocities (to machine precision) takes

place in the second stage.

verlet * berend

� Header records

SUBROUTINE verlet * berend (stage)

� Function

Solves the equations of motion using the Velocity Verlet scheme coupled with the Berendsen barostat[2].

� Dependencies

hardreflect

deportdata

frozenbead

error

exportvelocitydata (DPD-VV only)

dragforces dpdvv (DPD-VV only)

importforcedata (DPD-VV only)

global sca sca int

global sum dble

global sum int (Lowe, Peters, Stoyanov)
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� Arguments

stage input integer

� Comments

The Berendsen barostat rescales particle positions and system sizes in dimension α by the factor

µα = 1 +
β

τp
∆t(Pα − P0)

with the option of keeping the system isotropic by using equal values of Pα for all dimensions. (This may

be switched off if imposing constant surface tensions at given planar surfaces.) Rescaling of the simulation

volume takes place in the first stage, while calculation of the rescaling factor µα takes place in the second

stage after force integration.

13.2.15 statistics module

This module requires the modules constants, variables, start module, comms module and numeric container

to be loaded beforehand.

printout

� Header records

SUBROUTINE printout (time, lbegin)

� Function

Writes summary of simulation at the current time step to OUTPUT file.

� Dependencies

None

� Arguments

time input real(KIND=dp)

lbegin input logical

� Comments

The logical lbegin indicates whether or not the column titles should be printed before the data.

corout

� Header records

SUBROUTINE corout (time)

� Function

Writes statistical data to CORREL data file.

� Dependencies

None

� Arguments

time input real(KIND=dp)
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histout

� Header records

SUBROUTINE histout (time)

� Function

Writes trajectory data (particle positions and velocities) to HISTORY* data files.

� Dependencies

None

� Arguments

time input real(KIND=dp)

result

� Header records

SUBROUTINE result

� Function

Writes final summary of simulation to OUTPUT file.

� Dependencies

revive

� Arguments

idnode input integer

nodes input integer

statis

� Header records

SUBROUTINE statis

� Function

Calculates statistical properties of system, including rolling averages and fluctuations.

� Dependencies

sclsum

global sum dble

global sca max dble

global sca min dble



Chapter 14

DL MESO DPD Examples

Test cases for Dissipative Particle Dynamics simulations using DL MESO – including the required input and

sample output files – can be found in the DEMO/DPD subdirectory. All of the following examples can be run using

either the serial or parallel versions of DL MESO DPD; 96 processing units were used to test them in parallel

although smaller and larger numbers should also work. The smaller problems (i.e. with up to 20 000 particles)

are best suited to running in serial or on a small number of processor cores (e.g. 16 or less) to limit the times

required for interprocess communication, while larger problems are better suited to running in parallel to reduce

the memory requirements per processor core.

Images of all test cases and videos for some can be found in the Example Simulations page of the DL MESO

website: a link to it can be found at www.ccp5.ac.uk/DL MESO

14.1 Mixture Small

This simulation consists of 1000 particles with 3 species with populations of 333, 333 and 334 respectively.

All particle types have identical sizes and masses but different energy parameters, using the default mixing

rules for unlike particle parameters. Figure 14.1 gives a snapshot of the system at the end of the simulation,

demonstrating mixing between the three particle types (represented by different colours).

Figure 14.1: Visualization of system at final time step from DPD Mixture Ser test case

14.2 Mixture Large

This simulation example is similar to Mixture Small but larger: it consists of 512 000 particles with 2 species,

each with a population of 256 000 particles. The particle types have identical sizes and masses but different
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energy parameters, using the default mixing rules for unlike particle parameters. Figure 14.2 gives a snapshot

of the system at the end of the simulation, demonstrating good mixing between the two particle types.

Figure 14.2: Visualization of system at final time step from DPD Mixture Par test case

14.3 PhaseSeparation

This simulation example consists of 3000 particles with 2 species, each with a population of 1500. Both particle

types have identical sizes, masses and like-like energy parameters, but the unlike energy parameter has been

set to a larger value to produce phase separation, which can clearly be seen in Figure 14.3. The initial state of

this simulation has been provided in a CONFIG file. An .AVI video file of the first half of the simulation can be

found in the Example Simulations page of the DL MESO website.

(a) t = 2 (b) t = 20 (c) t = 50 (d) t = 100

Figure 14.3: Visualizations of DPD PhaseSeparation test case (red for particle type 1, blue for type 2)

14.4 Aggregate

This simulation consists of 3000 unbonded particles and 30 molecules of 10 particles each with harmonic bonds

between them. The unbonded particles and molecules are made up of different species with a higher energy

parameter for unlike particle interactions. This causes the molecules to aggregate, which can be seen in Figure

14.4, a snapshot of the simulation.
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Figure 14.4: Visualization of system at t = 2220 from DPD Aggregate test case

14.5 Polyelectrolyte

This simulation example consists of a slightly hydrophobic polyelectrolyte molecule of 50 particles, each with a

relative charge of +0.5, immersed in a salt solution of concentration 0.14M [14]. The salt solution consists of 9900

neutral water particles, 75 cationic salt particles (net charge +1), 75 anions of charge −1 and 25 counterions of

charge −1 to keep the system neutral. A similar simulation is included with the polyelectrolyte replaced with a

neutral polymer of the same number of particles and the counterions replaced with water (FIELD-neutral: this

should be renamed to FIELD to run the simulation and used with the same CONTROL file). Figure 14.5 gives a

comparison between the polyelectrolyte and neutral polymer at the final time step, which have measured radii

of gyration of 4.5 and 2.7 respectively.

(a) Polyelectrolyte (b) Neutral polymer

Figure 14.5: Visualizations of DPD Polyelectrolyte test case: red for polyelectrolyte/polymer, green for salt
cations, cyan for anions, orange for counterions (water omitted for clarity)

14.6 AmphiphileMesophases

This example consists of four separate simulations, each with 12 000 particles consisting of dimers (molecules

consisting of two particles, one hydrophilic and the other hydrophobic, with harmonic bonds of equilibrium

length 0.5 between them) and unbonded monomers[31]. Defining the composition φ as the ratio of DPD

particles within dimers to the total number of particles in the system, the interaction data for simulations with
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dimer compositions of 30%, 55%, 75% and 90% are provided with filenames FIELD-30, FIELD-55, FIELD-75

and FIELD-90 respectively. (Each of these files should be renamed to FIELD to run the simulation, while the

CONTROL defining the simulation properties can be used for all four simulations.)

These systems provide four points on a phase diagram corresponding to isotropic dimer, hexagonal, lamellar

and isotropic monomer phases respectively. The final configurations obtained for each phase can be seen in

Figure 14.6, shown as isosurfaces of the hydrophobic particles to highlight the distinctions between the phases.

(a) φ = 0.30 (b) φ = 0.55 (c) φ = 0.75 (d) φ = 0.90

Figure 14.6: Visualizations of DPD AmphiphileMesophases test case at final time step (isosurfaces of hydropho-
bic particles)

14.7 VesicleFormation

This simulation example consists of 37 440 unbonded water particles and 1008 molecules, each consisting of

one hydrophilic head particle and three hydrophobic tail particles bonded together with stiff harmonic bonds

of equilibrium length 1.0 between them[71]. The molecules represent amphiphiles and during the course of

the simulation self-assemble into a vesicle and encapsulate a number of water particles. Figure 14.7 shows the

self-assembled vesicle, both in three dimensions and in a cross-section to show the encapsulated water. An .AVI

video file of the simulation can be found in the Example Simulations page of the DL MESO website.

(a) Vesicle (water omitted for clarity) (b) Cross-section orthogonal to z-axis

Figure 14.7: Visualizations of DPD VesicleFormation test case at t = 50 000 (red for hydrophile, green for
hydrophobe, blue for water)
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14.8 PoiseuilleFlow

This simulation example consists of 3000 unbonded particles in a box of 10 × 10 × 10 DPD length units with

walls of frozen particles added to the surfaces orthogonal to the x-axis of thickness 1 DPD length unit and

particle density of 3. A constant body force in the direction of the y-axis is added to each non-frozen particle

which, in combination with the frozen particle walls approximating no-slip boundaries, gives Poiseuille flow of

the DPD fluid. Figure 14.8 gives a snapshot of the system at the final time step, as well as plots of y-component

velocity, density of the fluid particles and temperature (defined only by x- and z-components of velocity in this

case). The snapshot demonstrates a slight porosity of the frozen particle wall due to soft DPD interactions,

which could be alleviated by a higher frozen particle density[48], while the emergent velocity profile is similar to

that expected for Poiseuille flow. The temperature and density profiles are mainly flat across the entire spacing

between the walls, apart from significant density fluctuations close to the walls.

(a) Visualization of system at t = 2 000
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(b) Time-averaged y-component of velocity
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(c) Time-averaged fluid density and temperature

Figure 14.8: Visualization and plots from DPD PoiseuilleFlow test case: broken lines denote positions of
no-slip boundaries due to frozen particle walls

14.9 ShearFlow

This simulation example consists of 3000 unbonded particles in a box of 10 × 10 × 10 DPD length units with

Lees-Edwards shearing boundaries orthogonal to the y-axis. The Stoyanov-Groot thermostat is used for this

system to control both the fluid viscosity and system temperature. Figure 14.9 gives the time-averaged emergent

velocity profile, yielding a shear rate of 0.1941 (in DPD units, close to the applied shear rate of 0.2) against a

measured stress component 〈σyx〉 = −0.2063.
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Figure 14.9: Plot of x-component velocity from DPD ShearFlow test case: red line denotes best-fit for deter-
mining shear rate

14.10 VapourLiquid

This simulation example consists of 1000 unbonded water particles initially distributed uniformly in a box of

5× 5× 22 DPD length units, using the default many-body DPD interactions with Aij = −50 and Bij = 25 to

apply vapour-liquid interactions and surface tension[68, 12]. Figure 14.10 shows the system at the final timestep

after the water particles have coalesced into a single body surrounded by empty space.

Figure 14.10: Visualization of system at final time step from DPD VapourLiquid test case
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Manual compiliation and running of DL MESO

A.1 DL MESO LBE

DL MESO LBE has been written in C++ in a modular form and the main program codes – slbe.cpp for

serial running, plbe.cpp for parallel running – are designed to allow the user to change algorithms for collision,

mesophases etc. by specifying them in input files. Customised codes (slbecustom.cpp1 and plbecustom.cpp)

are also available to allow users to ‘hardwire’ the algorithms for collisions, mesophases etc. into the code,

which might improve computational efficiency. (Using incompressible fluids would require setting the parameter

incompress equal to 1: this can either be hard-wired into the customised codes or specified in the lbin.sys

file.)

To compile the code and produce an executable in the working directory, at a command line type:

� c++ ../LBE/slbe.cpp -o lbe.exe2

assuming that c++ is the name of the available C++ compiler, slbe.cpp is the version of the code being

compiled and lbe.exe is the name of the executable required. If compiling the parallel version of the code,

the command for the C++ compiler ‘wrapped’ with MPI is required, which is commonly mpiCC. Additional

compiler flags may be used between the compiler name and the reference to the code to improve computation

speed or assist in debugging.

Before running the executable, the required input files (lbin.sys, lbin.spa and optionally lbin.init) need

to be copied or moved into the working directory. If running in serial, the executable can just be run using the

command:

� lbe.exe if running in Windows, or

� /lbe.exe if running in Unix-like operating systems,

while the parallel version requires a command to run N identical copies of the program on N processors, e.g.

� mpirun -np N ./lbe.exe

and may need to be launched via a batch job script: please consult your machine administrator or documentation

for further details.

Modifications may be made to the customised versions of the code to select routines for e.g. specific collision,

propagation and mesophase interaction algorithms. For example, the Guo forcing scheme can be applied by

1If preferred, an alternative version that uses a boundary layer, slbecombine.cpp, is available.
2/ may need to be replaced by \ on computers running Windows.
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selecting collision routines with Guo, e.g. fCollisionBGKGuo, while multiple-relaxation-time (MRT) schemes

can be used with calls to fCollisionMRT*. Other possible modifications include modifying tuneable parameters

for MRT schemes, which are given in lbpMODEL.cpp for the required lattice model (D2Q9, D3Q15 or D3Q19).

Additional boundary conditions should be added to the fPostCollBoundary* or fPostPropBoundary* routines,

depending on whether they are applied after collisions (and before propagation) or after propagation respectively.

Calls to alternative and/or additional output routines can be included in the main loops of the customisable

codes, provided they are called before the output file number (qVersion) is increased. If no fluid-fluid interaction

forces are required, the calls to routines to zero interaction forces (fInteractionForceZero) and calculate them

(e.g. fInteractionForceShanChen) can be commented out to increase calculational efficiency.

A.2 DL MESO DPD

The Fortran90 modules for DL MESO DPD must be compiled in a particular order to satisfy dependencies of

shared variables and arrays:

� constants

� variables

� numeric container

� comms module

� error module

� parse utils

� bond module

� surface module

� ewald module

� manybody module

� domain module

� start module

� config module

� field module

� integrate module

� statistics module

� run module

� dlmesodpd

If running DL MESO DPD in serial, the modules comms module and domain module should be replaced by

comms module ser and domain module ser respectively.

To simplify the process, a makefile may be created either in the DPD directory or in the working directory to

automatically compile the modules and build the executable. Examples of these for running in the DPD directory

may be found in the DPD/makefiles directory and modified by the user. The compiler (after FC=) and flags

(after FFLAGS=) may need changing depending on the Fortran90 compiler available: if MPI is available, the
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Fortran90 compiler ‘wrapped’ with MPI (most commonly mpif90) is required. If invoking from the working

directory, the modules for DL MESO DPD should either be preceded by the path, i.e. ../DPD/, in the list of

compile sources or the directive VPATH=../DPD/ can be used before the source list; the latter strategy is used

by the DL MESO GUI when creating makefiles.

DL MESO DPD can be compiled using the command make if the makefile is called Makefile, or if it has a

custom name (e.g. Makefile-custom) by the command

� make -f Makefile-custom

The example makefiles will produce an executable with the name dpd.exe, which can be copied to the working

directory (if necessary). The required input files (CONTROL and FIELD) will also need to be created in or copied

into the same directory, as well as an optional CONFIG file to specify an initial configuration for a new simulation.

export* files from a previous run can be used for restarting a previous simulation, providing the number of

processing units remains the same; if the number of processing units changes, the utility exportconfig can be

used to convert the restart files into a CONFIG file.

If running in serial, the executable can just be run using the command:

� dpd.exe if running in Windows, or

� /dpd.exe if running in Unix-like operating systems,

while the parallel version requires a command to run N identical copies of the program on N processors, e.g.

� mpirun -np N ./dpd.exe

and may need to be launched via a batch job script: please consult your machine administrator or documentation

for further details.

The maximum numbers of particles per process (maxdim), pairs of unbonded interactions (maxpair) and the

maximum sizes of transfer buffers maxbuf are automatically set according to the total number of particles in the

system and the number of processing units to be used for simulations. The value of maxdim can be increased

by the user to allow for non-evenly distributed systems by setting a value for densvar in the CONTROL file.

If using alternative many-body DPD interactions to the vapour-liquid example provided, the routines manybody force

and manybody potential in manybody module.f90 should be modified by the user as necessary; the routine

local density should not be altered by the user but the function weight rho can be changed if an alternative

weighting function for calculating local densities is required. Additional bond, angle and dihedral types can also

be added to the subroutines bond force, angle force and dihedral force respectively in bond module.f90,

but this will also require changes to read field in config module.f90 to include a four-letter code for the

bond/angle/dihedral type that can be read from the FIELD file.
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DL MESO Utilities

DL MESO includes a number of utility programs which are not directly needed for Lattice Boltzmann or DPD

simulations but are useful both for producing files required as inputs for those calculations and to process output

files for visualization. These may be found in the /LBE/utility and /DPD/utility directories.

Compilation can either be carried out individually or collectively using makefiles: each utility directory includes

a makefile to compile all the utilities therein and the working directory /WORK includes one to compile both sets

for use with the GUI1. The latter can be invoked using the command

� make -f Makefile-utils

Some further details on these utilities can be found in the README files in the source directories.

B.1 DL MESO LBE

lbeinitcreate

lbeinitcreate is a utility written in C++ to create initialisation files (lbin.init) to override the default

initial conditions. This utility can add fluid drops to the system (either circular in 2D or spherical in 3D) and

rectangular ‘sources’ of specified solute concentrations or temperature to a system.

If c++ is the command for the available C++ compiler, the executable init.exe can be produced by typing

� c++ -o init.exe lbeinitcreate.cpp

and run at the command line (init.exe or ./init.exe).

A pre-existing lbin.sys file needs to exist in the directory where the utility is run, as this provides information

on the dimensions and size of the simulation system, the numbers of fluids and initial and constant densities for

each fluid, the number of solutes, whether or not a thermal lattice is included and the default initial velocity.

This information is displayed on the screen when the utility is run: if no lbin.sys file can be found, an error

message will be displayed and the utility will terminate.

If more than one fluid is specified in the lbin.sys file, the utility will then attempt to determine the continuous

fluid for the system from the initial densities and, if necessary, ask the user to identify it. The utility will then

ask for the number of drops to be added to the system: for each drop, the user will need to specify the fluid, its

radius and where its centre is located on the lattice grid. (Note that it is possible for a drop to extend beyond

the grid boundaries if periodic boundaries are in use.)

1If using the GUI and the utilties are to be compiled manually or in their source directories, copies of the executables are
required in the directory from which the GUI is to be launched, e.g. /WORK.
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If any solutes are to be included, the utility will ask for the number of solute ‘sources’ (i.e. regions of constant

solute concentration): for each source, it will then ask for the solute number, the required concentration, the

location of one corner of the rectangular source and its extent in each dimension (which can extend beyond

periodic boundaries). Similarly, if a temperature grid is included in the system, the utility will ask for the

number of temperature ’sources’, followed by the required temperature and the location of the corner and the

extent of the source.

Once all of the above information is obtained, the utility will then create the lbin.init file, which specifies the

grid points, velocities, fluid densities, solute concentrations and temperatures for any locations in the system

that require non-default initial conditions.

lbeplot3dgather

lbeplot3dgather is a utility written in C++ to gather Plot3D output files produced by the parallel version

of DL MESO LBE and produce a single structure file (lbtout.xyz or lbtout.xy) and a single set of solution

files (lbtout*.q) for visualization of the entire system.

If c++ is the command for the available C++ compiler, the executable plot3d.exe can be produced by typing

� c++ -o plot3d.exe lbeplot3dgather.cpp

and either run at the command line or via the GUI under Gather LBE Data.

All lbout*.xyz and lbout*.q files should be copied to the directory including the executable (if necessary)

before running, as well as the lbout.info file to give information on the sizes of integers and floating point

numbers. No user input is required, although the utility will stop with an error message if no lbout.info file is

available. No other error messages are produced, so care should be taken to ensure no solution files are missing.

This utility can be run with a command line argument to give the scalar property required, e.g. for Windows

and Unix/Linux computers respectively

� plot3d.exe 1

� ./plot3d.exe 1

where 0 is used for all properties, 1 for fluid density, 2 for mass fraction, 3 for solute concentration and 4 for

temperature. (If the GUI is used, this can be selected using the pulldown list in the Gather LBE Data panel.)

If the argument is omitted, the utility will ask the user to enter the required property. No other user input is

required, but error messages will be produced if either of the files lbout.info and lbout.ext are missing. No

other error messages are produced, so care should be taken to ensure no solution files for the pieces are missing

before running the utility. Since the data is copied into the combined structure and solution files, the original

output files can be deleted after this utility is run.

lbevtkgather

lbevtkgather is a utility written in C++ to gather Structured Grid XML-formatted VTK output files produced

by the parallel version of DL MESO LBE (lbout*.vts) and produce a set of linking files (lbtout*.pvts) for

visualization of the entire system.

If c++ is the command for the available C++ compiler, the executable vtk.exe can be produced by typing

� c++ -o vtk.exe lbevtkgather.cpp

and either run at the command line or via the GUI under Gather LBE Data.
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All lbout*.vts files should be copied to the directory including the executable (if necessary) before running,

as well as the lbout.info and lbout.ext files to give information about the number of processors used for the

simulation and the extents of each piece.

This utility can be run with a command line argument to give the scalar property required, e.g. for Windows

and Unix/Linux computers respectively

� vtk.exe 1

� ./vtk.exe 1

where 0 is used for all properties, 1 for fluid density, 2 for mass fraction, 3 for solute concentration and 4 for

temperature. (If the GUI is used, this can be selected using the pulldown list in the Gather LBE Data panel.)

If the argument is omitted, the utility will ask the user to enter the required property. No other user input is

required, but error messages will be produced if either of the files lbout.info and lbout.ext are missing. No

other error messages are produced, so care should be taken to ensure no VTK files for the pieces are missing,

particularly since these files are required for plotting as the linking files do not include the data.

B.2 DL MESO DPD

convert-input

convert-input is a utility written in C++ to read DPD input files created for earlier versions of DL MESO

(up to version 2.4) and create CONTROL and FIELD files formatted in the style for versions 2.5 and later.

This utility can be compiled to produce the executable convert.exe with the command

� c++ -o convert.exe convert-input.cpp

if c++ is the command for the available C++ compiler.

This utility can be run with up to three optional command line arguments specifying the names of the CONTROL,

FIELD and MOLECULE files in that order if they have alternative names. If the standard names are used, the old

CONTROL and FIELD are renamed after being read to prevent them being overwritten with the new versions of

those files. (The MOLECULE file is no longer required and therefore does not need to be renamed.)

molecule-generate

molecule-generate is a utility written in C++ to generate the input files required for modelling particles

in DPD simulations that are bonded together, i.e. molecules. A random flight generation system is used to

generate the coordinates of bonded beads – which can form branched molecule chains – a constant distance

apart within a cube of a size specified by the user, which will be used by DL MESO DPD to insert the molecule

into the system.

This utility can be compiled to produce the executable molecule.exe with the command

� c++ -o molecule.exe molecule-generate.cpp

if c++ is the command for the available C++ compiler. This utility can be run from the command line or via

the GUI in Set DPD Molecules (which runs the utility in a new command line/shell window).

When running the utility, if a FIELD file exists in the same directory as the executable, the number of species

and their names will be read from it; otherwise the user will be asked to enter this information and this will be
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written to a new FIELD file. The user will then be asked for the number of molecules required, the numbers of

bond, angles and dihedrals and their types and parameters.

For each molecule, the user is asked for its name, the number to be included in the system and whether or

not isomers of the molecule can be included. The side length for the cube inside which the molecule will fit is

then required, followed by the bond length, the number of molecule chains and the number of particles for each

chain. If the chain in question is not the first (primary) chain, the user will also be asked for a pre-existing

bead number as the starting point for the chain.

After this, the default species for the beads in the molecule will be requested: the user will then be asked enter

the bead numbers for each of the other species (0 can be entered to finish specifying bead numbers). If more

than one bond type is to be included, the user will be asked to select the default bond type and then select the

bonds that are of different types by typing the index bead number (and optionally the destination bead if more

than one is available). Bond angles and/or dihedrals can also be selected by typing in the index bead number

and then selecting the required bead triple or quadruple if more than one is available.

The molecules will be appended to the FIELD file in the correct format (see Section 12.1 for more details) with

positions for the beads relative to each molecule’s centre of mass. Note that this file will not be quite complete

after running this utility: data for unbonded interactions and external force fields may be required (if the FIELD

file is created using the utility) and a close directive will be required at the end.

exportconfig

exportconfig is a utility written in Fortran90 to produce a configuration file in DL POLY format (CONFIG) from

DL MESO DPD restart files (export*), which can be used as a starting point for new simulations (including

restarting simulations on different numbers of processes). Since a limited amount of data is included in restart

files, the FIELD file for the simulation is needed to provide some additional information.

The source code for this utility, exportconfig.f90, can be used for export or export* files created by both

the serial and parallel versions of DL MESO DPD: their endianness is automatically detected, so the utility

can be run on a different machine to the one used for DPD calculations. If the available Fortran90 compiler is

invoked by the command f90, the executable config.exe can be produced by typing

� f90 -o config.exe exportconfig.f90

and either run at the command line or by using the GUI in Process DPD Data after entering the number of

processes used in the required field and selecting the required CONFIG file key in the pulldown list.

This utility can be run with two command line arguments, the first indicating the number of processes used to

generate the restart data and the second denoting the CONFIG file key (levcfg: 0 = positions only, 1 = positions

and velocities, 2 = positions, velocities and force), e.g. if 16 processes were used and the particle positions and

velocities are required, either of the following commands can be used:

� export.exe 16 1

� ./export.exe 16 1

If no command line argument is given, the utility will ask the user to type in the number of processes and the

CONFIG file key.

exportimage

exportimage is a utility written in Fortran90 to produce a VTF format trajectory file (export.vtf) from

DL MESO DPD restart files (export*) that can be visualized to give a snapshot of the last simulation timestep.
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Since a limited amount of data is included in restart files, the FIELD file for the simulation is needed to provide

some additional information.

The source code for this utility, exportimage.f90, can be used for export or export* files created by both the

serial and parallel versions of DL MESO DPD: their endianness is automatically detected, so the utility can be

run on a different machine to the one used for DPD calculations. If the available Fortran90 compiler is invoked

by the command f90, the executable export.exe can be produced by typing

� f90 -o export.exe exportimage.f90

and either run at the command line or by using the GUI in Process DPD Data.

This utility can be run with a command line argument indicating the number of processes used to generate the

restart data, e.g. if 16 processes were used, either of the following commands can be used:

� export.exe 16

� ./export.exe 16

If no command line argument is given, the utility will ask the user to type in the number of processes. (The

number of processes can be specified in the GUI before running the utility.)

traject

The Fortran90 utility traject reads in HISTORY* output data files generated by DL MESO DPD and produces

a VTF format trajectory file (traject.vtf) that can visualize the simulation after equilibration, such that

snapshots at the recorded timesteps and animations can be produced.

Two versions of the utility are provided: traject.f90 outputs every particle for all recorded timesteps, and

trajectselected.f90 allows the user to select the number of particles and the number of timesteps to output

to the trajectory file. Both versions of the utility can be used with both HISTORY and HISTORY* files produced

by the serial and parallel versions of DL MESO DPD respectively: their endianness is automatically detected,

so the utility can be run on a different machine to the one used for DPD calculations. If f90 is the command

for the available Fortran90 compiler, the executable traject.exe can be produced by typing

� f90 -o traject.exe traject.f90

and either run at the command line or via the GUI in Process DPD Data. A command line argument

indicating the number of processes (and therefore the number of HISTORY or HISTORY* files) can be included in

a similar way to the exportimage utility.

The alternative version can be compiled in the same way: by default the makefiles create executables named

trajects.exe. This version takes the same command line argument as traject.f90. After the number of

processes is typed in, the utility displays the total number of particles, the number of unbonded particles in

the simulation and the total number of timesteps available, before asking for the particle number range and

number of timesteps (including a starting timestep) to be written in the trajectory file. This version of the

utility cannot be invoked using the GUI.

local

local is a utility written in Fortran90 that can read in HISTORY* output data files generated by DL MESO DPD

and produce series of VTK format files containing statistical properties – number of beads, density, compositions

per particle and molecule types, temperature and mean velocity – in cuboidal subdivisions of the simulation

volume for plotting and/or visualization.
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The source code for this utility, local.f90, can read both HISTORY and HISTORY* files generated by the serial

and parallel versions of DL MESO DPD respectively: their endianness is automatically detected, so the utility

can be run on a different machine to the one used for DPD calculations. If f90 is the command for the available

Fortran90 compiler, the executable local.exe can be produced by typing

� f90 -o local.exe local.f90

and either run at the command line or via the GUI in Process DPD Data after entering both the number of

processes used in simulations and the number of divisions required in each dimension.

This utility can be run with four command line arguments: the first denoting the number of processes and the

others giving the number of divisions required in x-, y- and z-directions respectively. If these arguments are

omitted, the user will be asked to enter these values.

Files named local *.vtk are produced for all the specified time steps after equilibration containing the following

data for each cuboidal cell:

� the mean velocity for all unfrozen beads

� the number of unfrozen beads

� overall temperature

� partial temperatures for each dimension (i.e. for dimension α, Tα =
∑
imiv

2
i,α)

� densities for each bead species

� volume fractions for bead species (starting from type 01)

� volume fractions for molecule types (starting from type 00 for all unbonded beads)

An additional file, averages.vtk, is also produced with time-averaged values for the velocities, species densities,

overall and partial temperatures in each cuboidal cell.

The scalar properties (including compositions) may be considered to act across the entire volumes of the cells,

while the velocities are representative for the cell centres.



Appendix C

DL MESO DPD Error Messages

This appendix documents the error and warning messages currently available in the DPD code in DL MESO,

DL MESO DPD, and recommendations for users to try and overcome the errors. Users may contact the authors

of DL MESO after attempting the recommended actions.

Message 1: cutoff radius value not set

A valid cutoff radius (rc) for all interactions cannot be found in the CONTROL file: this is a compulsory parameter

for DPD simulations.

Action: Look in the CONTROL file and make sure the cutoff directive is included with a non-zero value.

Message 2: temperature not set

A valid system temperature (kBT ) cannot be found in the CONTROL file: this is a compulsory parameter for

DPD simulations.

Action: Look in the CONTROL file and make sure the temperature directive is included with a non-zero value.

Message 3: time step size not set

A valid simulation timestep (∆t) cannot be found in the CONTROL file: this is a compulsory parameter for DPD

simulations.

Action: Look in the CONTROL file and make sure the timestep directive is included with a non-zero value.

Message 4: boundary halo size larger than half subdomain size

The size of the boundary halo (either specified by the user or determined from required interaction and bond

lengths) exceeds half the length of at least one dimension of the subdomain volume assigned to each processor.

The DPD simulation may therefore run less efficiently.

Action: None required to ensure the simulation runs as this is a warning message, but the user may wish to

reduce the specified boundary halo size or use global bond calculations for future calculations.

Message 5: too many beads per node

The number of particles likely to be assigned to each processor is greater than the calculated maximum value

maxdim.
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Action: This error is unlikely to happen as maxdim is calculated according to the numbers of particles and

processors available, but the user may wish to use the densvar directive in the CONTROL file to increase this

value.

Message 10: cannot read CONFIG file

The supplied CONFIG file cannot be read by DL MESO DPD: it might have been corrupted.

Action: Check the CONFIG file to ensure it is complete and in ANSI (text) format.

Message 20: missing CONTROL file

No input file named CONTROL can be found.

Action: Make sure there is a CONTROL file in the same directory as the DL MESO DPD executable.

Message 21: cannot read CONTROL file

The supplied CONTROL file cannot be read by DL MESO DPD: it might have been corrupted.

Action: Check the CONTROL file to ensure it is complete and in ANSI (text) format.

Message 30: missing FIELD file

No input file named FIELD can be found.

Action: Make sure there is a FIELD file in the same directory as the DL MESO DPD executable.

Message 31: cannot read FIELD file

The supplied FIELD file cannot be read by DL MESO DPD: it might have been corrupted.

Action: Check the FIELD file to ensure it is complete and in ANSI (text) format.

Message 32: unrecognised bond type defined in FIELD file

A bond type not included in Table 12.3 has been found in the FIELD file.

Action: Check the FIELD file to ensure all bond types are valid; if adding a new bond type to DL MESO DPD,

the scan field and read field routines in config module need to be modified.

Message 33: unrecognised bond angle type defined in FIELD file

A bond angle type not included in Table 12.4 has been found in the FIELD file.

Action: Check the FIELD file to ensure all bond angle types are valid; if adding a new bond angle type to

DL MESO DPD, the scan field and read field routines in config module need to be modified.

Message 34: unrecognised bond dihedral type defined in FIELD file

A bond dihedral type not included in Table 12.5 has been found in the FIELD file.

Action: Check the FIELD file to ensure all bond dihedral types are valid; if adding a new bond dihedral type to

DL MESO DPD, the scan field and read field routines in config module need to be modified.
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Message 35: non-existent species given in FIELD file for molecule i

An undefined species has been found in the definition for the i-th molecule type in the FIELD file.

Action: Check the FIELD file, particularly the i-th molecule type and the species definitions, to ensure the

species in the molecule are defined.

Message 36: unrecognised bond definition in FIELD file for molecule i

A bond definition has been found in the FIELD file for the i-th molecule that was not detected during the initial

scan of the input file.

Action: This error should never occur! If it does, please contact the authors of DL MESO.

Message 37: unrecognised bond angle definition in FIELD file for molecule i

A bond angle definition has been found in the FIELD file for the i-th molecule that was not detected during the

initial scan of the input file.

Action: This error should never occur! If it does, please contact the authors of DL MESO.

Message 38: unrecognised dihedral angle definition in FIELD file for molecule i

A bond dihedral definition has been found in the FIELD file for the i-th molecule that was not detected during

the initial scan of the input file.

Action: This error should never occur! If it does, please contact the authors of DL MESO.

Message 40: non-existent species given in FIELD file for unbonded interaction i

An undefined species has been found in the i-th (unbonded) interaction definition in the FIELD file.

Action: Check the FIELD file, particularly the i-th interaction type and the species definitions, to ensure the

species in the interaction are defined.

Message 41: non-existent species given in FIELD file for surface interaction i

An undefined species has been found in the i-th (hard) surface interaction definition in the FIELD file.

Action: Check the FIELD file, particularly the i-th surface interaction and species definitions, to ensure the

species in the interaction are defined.

Message 42: non-existent species given in FIELD file for frozen wall interaction

An undefined species has been found in the definition for frozen particle walls in the FIELD file.

Action: Check the FIELD file, particularly the frozen particle wall and species definitions, to ensure the required

frozen particle species is defined.

Message 43: incomplete many-body DPD interaction data in FIELD file

Not all species pairs have defined interaction parameters in the FIELD file: this is vital for systems with any

many-body DPD interactions as universal mixing rules are unavailable for many-body DPD parameters.
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Action: Check the FIELD file to ensure that unbonded interactions between every possible species pair is defined.

Message 44: no interaction data in FIELD file for single species i

Unbonded interaction data between particle pairs of the same species i are unavailable in the FIELD file: mixing

rules to determine any missing interaction data thus cannot be applied.

Action: Check the FIELD file to ensure that unbonded interactions exist for same-species pairs.

Message 45: zero reciprocal vector range for ewald sum

The maximum reciprocal vector, ~kmax, has not been defined for systems requiring Ewald sum electrostatics.

Action: Look in the CONTROL file and make sure the ewald directive includes the convergence parameter α and

the extents of the maximum reciprocal vector, k1, k2 and k3.

Message 50: insufficient number of beads per node allocated for required initialization

The value of maxdim is not large enough to include the unbonded particles assigned to each processor for a new

simulation (without a CONFIG file).

Action: This error is unlikely to happen as maxdim is calculated according to the numbers of particles and

processors available, but the user may wish to use the densvar directive in the CONTROL file to increase this

value.

Message 51: discrepency in total number of starting beads - i too many/few

The total number of particles assigned to all processors for a new simulation does not match up with the

numbers specified in the FIELD file (taking nfold duplication into account if a CONFIG file is used).

Action: For simulations without CONFIG files, this error should never occur and the authors of DL MESO should

be contacted if it does. If using a CONFIG file, check the FIELD file to ensure that the number of particles for

each species and numbers of molecules match up with those in the CONFIG file.

Message 52: cube for molecule i bigger than domain

The maximum extent of molecule i, which is represented as a cube, is larger than the defined size of the system.

This is particularly important for systems with hard surfaces or frozen walls as molecules cannot cross these

boundaries.

Action: If running a simulation with hard surfaces or frozen walls, either the system size must be increased to

accomodate the defined molecule or the molecule needs to be made smaller. If running a simulation without

hard surfaces or frozen walls, this is only a warning message: no action is thus required but the user may wish

to consider modifying either the system or molecule sizes in future.

Message 53: insufficient number of beads per node allocated for required CONFIG file

The value of maxdim is not large enough to include the particles assigned to each processor for a new simulation

with a CONFIG file.

Action: This error is unlikely to happen as maxdim is calculated according to the numbers of particles and

processors available (taking into account any nfold duplications), but the user may wish to use the densvar

directive in the CONTROL file to increase this value.
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Message 54: non-existent species given in CONFIG file for bead i

An undefined species has been found in the definition for the i-th particle in the CONFIG file.

Action: Check the species definitions in the FIELD file and the i-th particle in the CONFIG file to ensure that

species is defined.

Message 61: deport coordinate buffers exceeded

The amount of particle data received during deport is greater than the current processor can accommodate.

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.

The user may wish to use the densvar directive in the CONTROL file to increase the value of maxdim and thus

accommodate larger numbers of particles.

Message 62: deport coordinate buffers exceeded for lees-edwards shear

The amount of particle data received during deport with Lees-Edwards shearing is greater than the current

processor can accommodate.

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.

The user may wish to use the densvar directive in the CONTROL file to increase the value of maxdim and thus

accommodate larger numbers of particles.

Message 71: import coordinate buffers exceeded

The number of additional particles created during import of particle forces is greater than the current processor

can accommodate.

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.

The user may wish to use the densvar directive in the CONTROL file to increase the value of maxdim and thus

accommodate larger numbers of particles.

Message 72: import coordinate buffers exceeded for lees-edwards shear

The number of additional particles created during import of particle forces with Lees-Edwards shearing is greater

than the current processor can accommodate.

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.

The user may wish to use the densvar directive in the CONTROL file to increase the value of maxdim and thus

accommodate larger numbers of particles.

Message 81: export coordinate buffers exceeded

The number of additional particles created during export of particles into boundary halos is greater than the

current processor can accommodate.

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.

The user may wish to use the densvar directive in the CONTROL file to increase the value of maxdim and thus

accommodate larger numbers of particles.
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Message 82: export coordinate buffers exceeded for lees-edwards shear

The number of additional particles created during export of particles into boundary halos with Lees-Edwards

shearing is greater than the current processor can accommodate.

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.

The user may wish to use the densvar directive in the CONTROL file to increase the value of maxdim and thus

accommodate larger numbers of particles.

Message 83: cannot correctly export velocities to boundary halos

Particle velocities (for DPD Velocity Verlet integration) cannot be exported correctly to particles already in the

boundary halos.

Action: This error should never occur! If it does, please contact the authors of DL MESO.

Message 84: cannot correctly export densities to boundary halos

Particle densities (for many-body DPD) cannot be exported correctly to particles already in the boundary halos.

Action: This error should never occur! If it does, please contact the authors of DL MESO.

Message 100: wrong bead total after compression - i too many/few

The total number of particles after the first Velocity Verlet integration stage (including dealing with boundary

conditions etc.) does not equal the specified total number of particles for the system.

Action: This error should never occur! If it does, please contact the authors of DL MESO.

Message 200: bond too long or cannot be found

At least one bond between specified particles is too long (e.g. longer than the maximum specified length for the

potential) or cannot be calculated due to lack of available information for both particles. The bond(s) identified

as overly long or lost is/are printed either in the OUTPUT file or in the standard output (e.g. screen).

Action: If calculating bonds locally, increasing the size of boundary halos may reduce the likelihood of bonds

being ‘broken’; alternatively global bond calculations can ensure all data is available at the cost of replication

over all processors. Adjusting the parameters for the bond potential may also help ensure bonds do not get too

long.

Message 201: too many interacting pairs

The number of interacting pairs for non-DPD thermostats (Lowe-Andersen, Peters, Stoyanov-Groot) exceeds

the maximum number calculated from the number of particles in the system, maxpair.

Action: The user may wish to use the densvar directive in the CONTROL file to increase the values of maxdim

and maxpair, thus accommodating larger numbers of interacting pairs.

Messages 1001–1096: allocation/deallocation errors

Allocation or deallocation of arrays for DPD calculations (including reading of input data, transfer buffers for

communications between processors, global arrays of particle velocities for Lowe-Andersen/Peters/Stoyanov-
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Groot thermostats etc.) has failed. This may be due to a lack of addressable memory required for the DPD

calculations. These messages identify which allocation/deallocation has failed by module and routine names.

Action: Increase the amount of memory available for running DL MESO DPD by closing any other running

applications, running the simulation on a larger number of processors (to reduce the memory required per

processor), underpopulating multicore processors (i.e. using fewer cores per processor than the maximum

available) or upgrading your machine. Alternatively, try running a smaller simulation.





Appendix D

DL MESO Licence Agreement (Academic

Purposes)

1. DEFINITIONS AND INTERPRETATION

1.1 In this Licence Agreement the following expressions have the

meanings set opposite:

Academic Purposes fundamental or basic research or academic

teaching, including any fundamental research

that is funded by any public or charitable

body, but not any purpose that generates

revenue (as opposed to grant income) for the

Licensee or any third party. Any research

that is wholly or partially sponsored by any

profit making organisation or that is carried

out for the benefit of any profit-making

organisation is not an Academic Purpose;

a Derived Work any modification of, or enhancement or

improvement to, any of the DL_MESO Software

and any software or other work developed or

derived from any of the DL_MESO Software;

the DL_MESO Software the release and version of the DL_MESO

Software downloaded by the Licensee from the

DL_MESO Website immediately after the Licensee

agrees to the terms and conditions of this

Licence Agreement;

the DL_MESO Website the website with the URL

http://www.ccp5.ac.uk/DL_MESO,

and any website that from time to time

replaces that website;

a Harmful Element any virus, worm, time bomb, time lock, drop

dead device, trap and access code or anything

else that might disrupt, disable, harm or
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impede the operation of any information

system, or that might corrupt, damage, destroy

or render inaccessible any software, data or

file on, or that may allow any unauthorised

person to gain access to, any information

system or any software, data or file on it;

Intellectual Property patents, trade marks, service marks,

registered designs, copyrights, database

rights, design rights, know-how, confidential

information, applications for any of the

above, and any similar right recognised from

time to time in any jurisdiction, together

with all rights of action in relation to the

infringement of any of the above;

the Licence Period the period beginning when the Licensee

agrees to the terms and conditions of this

Licence Agreement and downloads the DL_MESO

Software from the DL_MESO Website and ending

on the termination of this Licence Agreement

under clause 5.2.

2. LICENCE

2.1 STFC grants the Licensee an indefinite, non-exclusive,

non-transferable, royalty free licence to use, copy, modify, and

enhance the DL_MESO Software during the Licence Period on the

terms and conditions of this Licence Agreement provided that:

2.1.1 the Licensee may not distribute any of the DL_MESO Software

or any Derived Work to any third party, or share their use

with any third party (whether free of charge or otherwise),

and the Licensee may not sub-license the use of any of the

DL_MESO Software to any third party unless, in each case,

that third party has complied with clause 2.3 below;

2.1.2 the Licensee may not use the DL_MESO Software on behalf of,

or for the benefit of, any third party (including, without

limitation, using it to provide bureau, outsourcing or

application services or facilities management services)

party unless that third party has complied with clause 2.3

below; and

2.1.3 the DL_MESO Software and any Derived Work may be used by

the Licensee and its employees and registered students for

Academic Purposes only.

2.2 If the Licensee wishes to use the DL_MESO Software or any Derived

Work in any way except for Academic Purposes, or wishes to

distribute or make the DL_MESO Software or any Derived Work
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available to any third party for non-Academic Purposes, it must

obtain a commercial licence from STFC. STFC may refuse to grant

the Licensee a commercial licence. If STFC agrees to grant a

commercial licence, that licence will be on such terms and

conditions as STFC sees fit.

2.3 If the Licensee wishes to carry out any collaboration for

Academic Purposes with any third party and that third party needs

to use the DL_MESO Software in connection with that

collaboration, or if the Licensee wishes to make the DL_MESO

Software available online to any third party for Academic

Purposes, the Licensee must direct that third party to the

DL_MESO Website. That third party may use the DL_MESO Software

and any Derived Work (whether obtained from STFC or from the

Licensee) only if it has completed the registration process on

the DL_MESO Website and agreed to the terms and conditions of the

Licence Agreement for the use of the DL_MESO Software for

Academic Purposes that then appear on the DL_MESO Website.

2.4 This Licence Agreement allows the Licensee to use only the

release or version of the DL_MESO Software downloaded by the

Licensee from the DL_MESO Website immediately after the Licensee

agrees to the terms and conditions of this Licence Agreement; the

Licensee must acquire a new licence for any future release or

version of the DL_MESO Software that it wishes to use.

2.5 The Licensee will not tamper with, or remove, any copyright or

other proprietary notice or any disclaimer that appears on or in

any part of the DL_MESO Software, and will reproduce the same in

all copies of any of the DL_MESO Software and in all Derived

Works.

3. WARRANTIES AND LIABILITY

3.1 The DL_MESO Software is provided for Academic Purposes free of

charge. Therefore STFC gives no warranty and makes no

representation in relation to the DL_MESO Software or any

assistance or advice that STFC may give in connection with the

DL_MESO Software. The Licensee will indemnify STFC against any

and all claims arising as a result of the Licensee having made

any of the DL_MESO Software or any Derived Work available to any

third party.

3.2 Before using any of the DL_MESO Software, the Licensee will check

that the DL_MESO Software does not contain any Harmful Element.

STFC does not warrant that the DL_MESO Software will run without

interruption or be error free, or be free from any Harmful

Element. STFC is not obliged to provide any support or error

correction service, assistance or advice in relation to the

DL_MESO Software, but the Licensee may access any error

corrections and online assistance that STFC chooses to make
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available on the DL_MESO Website from time to time. If STFC does

provide that sort of service, assistance or advice, subject to

clause 3.7, STFC will not be liable for any loss or damage

suffered by the Licensee as a result.

3.3 STFC will not be liable to the Licensee to the extent that any

loss or damage is caused: by the Licensee’s failure to implement,

or the Licensee’s delay in implementing, any correction or advice

in relation to the DL_MESO Software that STFC has made available

on the DL_MESO Website; or by the Licensee’s failure to acquire a

licence of and to implement any new release or version of the

DL_MESO Software that would have remedied or mitigated the

effects of any error, defect, bug or deficiency in the DL_MESO

Software.

3.4 The Licensee acknowledges that proper use of the DL_MESO Software

and any Derived Work is dependent on the Licensee, its employees

and students exercising proper skill and care in inputting data

and interpreting the output provided by the DL_MESO Software or

that Derived Work. STFC will not be liable for the consequences

of decisions taken by the Licensee or any other person on the

basis of that output. STFC does not accept any responsibility

for any use which may be made by the Licensee of that output, nor

for any reliance which may be placed on that output, nor for

advice or information given in connection with that output.

3.5 Subject to clause 3.7, STFC’s liability or any breach of this

Licence Agreement, any negligence or arising in any other way out

of the subject matter of this Licence Agreement or the use of the

DL_MESO Software, will not extend to any incidental or

consequential damages or losses, or any loss of profits, loss of

revenue, loss of data, loss of contracts or opportunity, whether

direct or indirect, even if the Licensee has advised STFC of the

possibility of those losses arising or if they were or are within

STFC’s contemplation.

3.6 Subject to clause 3.7, the aggregate liability of STFC for any

and all breaches of this Licence Agreement, any negligence or

arising in any other way out of the subject matter of this

Licence Agreement or the use of the DL_MESO Software will not

exceed in total 5000.

3.7 Nothing in this Licence Agreement limits or excludes STFC’s

liability for death or personal injury caused by its negligence

or for any fraud, or for any sort of liability that, by law,

cannot be limited or excluded.

3.8 The express undertakings and given by STFC in this Licence

Agreement and the terms of this Licence Agreement are in lieu of

all warranties, conditions, terms, undertakings and obligations

on the part of STFC, whether express or implied by statute,
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common law, custom, trade usage, course of dealing or in any

other way. All of these are excluded to the fullest extent

permitted by law.

4. INTELLECTUAL PROPERTY RIGHTS AND ACKNOWLEDGEMENTS

4.1 Nothing in this Licence Agreement assigns or transfers any

Intellectual Property Rights in any of the DL_MESO Software.

Those rights are reserved to STFC.

4.2 The Licensee will ensure that, if any of its employees or

students publishes any article or other material resulting from,

or relating to, a project or work undertaken with the assistance

of any part of the DL_MESO Software, that publication will

contain the following acknowledgement:

"DL_MESO is a mesoscale simulation package written by R. Qin,

W. Smith and M. A. Seaton and has been obtained from STFC’s

Daresbury Laboratory via the website

http://www.ccp5.ac.uk/DL_MESO".

5. TERMINATION

5.1 This Licence Agreement will take effect and the Licence Period

will start when the Licensee has agreed to the terms and

conditions of this Licence Agreement and downloaded the DL_MESO

Software from the DL_MESO Website.

5.2 This Licence Agreement will terminate immediately and

automatically if:

5.2.1 the Licensee is in breach of this Licence Agreement; or

5.2.2 the Licensee becomes insolvent, or if an order is made or a

resolution is passed for its winding up (except voluntarily

for the purpose of solvent amalgamation or reconstruction),

or if an administrator, administrative receiver or receiver

is appointed over the whole or any part of its assets, or

if it makes any arrangement with its creditors.

5.3 The Licensee’s right to use the DL_MESO Software will cease

immediately on the termination of this Licence Agreement, and the

Licensee will destroy all copies of the DL_MESO Software that it

or any of its employees or students then holds.

5.4 Clauses 1, 2.2, 3, 4, 5.3, 5.4, 5.5 and 6 will survive the expiry

of the Licence Period and the termination of this Licence

Agreement, and will continue indefinitely.

5.5 STFC may stop providing any assistance or advice in relation to,

or any corrections, new releases or versions of the DL_MESO, and
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may stop updating or publishing the DL_MESO Website at any time.

6. GENERAL

6.1 Headings: The headings in this Licence Agreement are for ease of

reference only; they do not affect its construction or

interpretation.

6.2 Assignment etc: The Licensee may not assign or transfer this

Licence Agreement as a whole, or any of its rights or obligations

under it, without first obtaining the written consent of STFC.

6.3 Illegal/unenforceable provisions: If the whole or any part of any

provision of this Licence Agreement is void or unenforceable in

any jurisdiction, the other provisions of this Licence Agreement,

and the rest of the void or unenforceable provision, will

continue in force in that jurisdiction, and the validity and

enforceability of that provision in any other jurisdiction will

not be affected.

6.4 Waiver of rights: If STFC fails to enforce, or delays in

enforcing, an obligation of the Licensee, or fails to exercise,

or delays in exercising, a right under this Licence Agreement,

that failure or delay will not affect its right to enforce that

obligation or constitute a waiver of that right. Any waiver by

STFC of any provision of this Licence Agreement will not, unless

expressly stated to the contrary, constitute a waiver of that

provision on a future occasion.

6.5 Entire agreement: This Licence Agreement constitutes the entire

agreement between the parties relating to its subject matter.

The Licensee acknowledges that it has not entered into this

Licence Agreement on the basis of any warranty, representation,

statement, agreement or undertaking except those expressly set

out in this Licence Agreement. The Licensee waives any claim for

breach of, or any right to rescind this Licence Agreement in

respect of, any representation which is not an express provision

of this Licence Agreement. However, this clause does not exclude

any liability which STFC may have to the Licensee (or any right

which the Licensee may have to rescind this Licence Agreement) in

respect of any fraudulent misrepresentation or fraudulent

concealment before the signing of this Licence Agreement.

6.6 Amendments: No variation of, or amendment to, this Licence

Agreement will be effective unless it is made in writing and

signed by each party’s representative.

6.7 Third parties: No one who is not a party to this Licence

Agreement has any right to prevent the amendment of this Licence

Agreement or its termination, and no one except a party to this

Licence Agreement may enforce any benefit conferred by this
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Licence Agreement, unless this Licence Agreement expressly

provides otherwise.

6.8 Governing law: This Licence Agreement is governed by, and is to

be construed in accordance with, English law. The English Courts

will have exclusive jurisdiction to deal with any dispute which

has arisen or may arise out of or in connection with this Licence

Agreement, except that STFC may bring proceedings against the

Licensee or for an injunction in any jurisdiction.
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