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How Do Crystals 
Melt? 
Simon R. Phillpot, Sidney Yip and Dieter Wolf 

Computer simulations demonstrate the interplay between 
thermodynamics and kinetics during the melting process 

elting, the fundamental process in which, at a 
certain temperature T m, a crystalline sub­
stance undergoes a phase change from a solid 
to a liquid (melt), still holds mysteries despite 
its common occurrence. One reason is that in 
experiments it is still not feasible to observe 
directly the atomistic details of the process. 

This means that we do not know the structural arrange­
ments of the atoms or their characteristic motions prior to 
and during melting-information which is needed in 
formulating a fundamental theory of the transition. 
Another reason is that most theoretical methods, includ­
ing atomic-level computer simulations, do not take into 
account the effects of extrinsic lattice defects, such as 
surfaces, dislocations and grain boundaries. The role of 
lattice defects in the onset of the destruction oflong-range 
order has, consequently, not been clearly established. 

Our inability to see how melting occurs does not 
prevent us from knowing why it occurs and when the 
order-disorder transition should take place. According to 
thermodynamics, the melting point T m is that tempera­
ture at which the solid and liquid phases can coexist in 
equilibrium, a condition which occurs w~e~ the .Gibbs free 
energies of the two phases are equal. It ts tmphed that at 
temperatures above this coexistence temperature the 
crystal is unstable. However, thermodynamics says noth­
ing about what the mechanism of melting is, nor how ion~ 
the process will take. These questions are related to the ki­
netics of the phenomenon. For a more complete under­
standing of melting one therefore needs to be concerned 
with both thermodynamics and kinetics. 
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Theories of Melting 
In a general discussion of melting, one should 

distinguish from the outset between intrinsic and extrinsic 
lattice defects. Intrinsic defects, such as lattice vacancies, 
are produced thermally. By contrast, due to the increase in 
free energy associated with their creation, extrinsic defects 
are usually thermodynamically metastable. For example, 
grain boundaries can be eliminated from polycrystals by 
high-temperature annealing, thus allowing the material to 
achieve a state of lower free energy during the process of 
recrystallization. A number of theories of melting have 
been proposed during the past seventy years or so, all of 
which consider only the effects of intrinsic defects. These 
theories generally assume the dominant mechanism to be 
one of three types: 

(a) According to Lindemann, melting is caused by 
the onset of an instability when the displacements during 
thermal vibration of the atoms exceed a certain threshold 
value ("Lindemann criterion"). 

(b) According to Born, melting arises from the onset 
of a mechanical instability, manifesting itself in an 
imaginary phonon frequency at the onset of which the 
crystal lattice collapses ("Born instability"). 

(c) In the theories of Cahn and others, the 
spontaneous production of intrinsic lattice defects, such 
as vacancies and intrinsic arrays of dislocations near the 



Fig.1: Crystallographic unit cell of the diamond lattice,
with silicon atoms denoted by red balls and nearest­
neighbor bonds signified in blue. The bonds of one of the
four-fold coordinated silicon atoms are highlighted in
white. The green rectangle illustrates a (Ito) plane. The
edge of this cubic unit cell defines the lattice parameter,
a = 5.43IA, of Si. (1 Angstrom = to-10m.)

melting point, is thought to be responsible for the break­
down of long-range crystalline order.

These theories have in common that melting is
considered as a process occurring homogeneously
throughout the crystal, with the effects of surfaces, both
internal or external, being entirely neglected.

Experimentally, however, it is well known that
melting generally proceeds from surfaces into the interior
crystalline regions-a process requiring a finite amount of
time. For example, about 30 years ago Turnbull and
coworkers demonstrated that melting of silica, Si02 , and
phosphorous pentoxide, P2 Os, are not homogeneous
processes but that , instead, the liquid phase nucleates at
free surfaces and grain boundaries, from which it
propagates into the crystal. Also, recent laboratory
experiments by Daeges, Gleiter and Perepezko have
demonstrated that small single crystals of silver can be
superheated above the melting temperature when coated
with gold (which has an almost identical lattice parameter
but a higher melting point) . Such a coating replaces the
silver free surface with a silver-gold interface. Because the
lattice parameters of the materials are so similar, however,
the effects of such an interface should be small. It was
found that the coated pellets could be heated well past the
melting point of silver whereas normally, superheating
above Tm is known to be difficult to achieve in metals.

These observations not only raise the question of
whether melting can, indeed, be regarded as a homoge­
neous process, but also point to the need for a direct

Fig.2: Viewof the computational cell from above showing
the top two (110) planes each containing 22 Si atoms as
yellow and red balls, respectively. The dotted gold line
encloses the computational cell, which is rotated by 25.24°
relative to the < 110> and < 100> directions in the
crystal; the latter are indicated by white arrows. The
smaller area enclosed by the green and white lines
corresponds to the fraction contained in the single cubic
unit cell shown in Fig. 1.

simulational study of melting where surface effects can be
isolated, and analyzed in terms of thermodynamics and
kinetics.

Molecular-Dynamics Simulation of
Silicon at High Temperature

Atomistic modeling, in the form of molecular­
dynamics (MD) and Monte Carlo simulations, is a
method of studying the cooperative and individual
behavior of a system of atoms under well-prescribed
conditions. Through the use of interatomic interaction
potentials and border conditions, simulations can be made
to represent the physical state of a material at finite
temperatures and pressures reasonably well. The results of
such simulations are particularly valuable for the study of
the relation between the atomic structure of a system and
its thermodynamic, mechanical, and transport properties.
Because of these features, atomistic simulation is increas­
ingly gaining recognition as a means of probing complex
physical processes at the atomic level.

The choice of silicon for our simulation of the melting
process is motivated by three factors. First , due to its
covalent nature of bonding, the crystal structure of silicon
is that of cubic diamond, with only four nearest neighbors.
Every Si atom may thus be considered to occupy the

COllPllTRS IN PHYSICS, NOV/DEC 1889 21



center of a tetrahedron, with the four nearest neighbors at
the comers (see Fig. 1). Upon melting, the tetrahedral
coordination is destroyed in favor of an average six-fold
coordination in the liquid. By monitoring the average
number of nearest neighbors of every atom during the
simulation, the four-coordinated "crystalline" Si atoms
may readily be distinguished from the six-coordinated
"liquid" Si atoms. The fact that a good empirical
interatomic potential is available for silicon (derived by
Stillinger and Weber) which has been shown to give a
rather realistic overall description of its physical proper­
ties, provides another reason for our choice of silicon.
Finally, silicon is a good choice because extensive
experimental data exists on its melting and freezing
behavior, including the well-known fact that, like ice,
silicon contracts upon melting.

In any study of melting, knowledge of the thermody­
namic melting point, Tm s is of primary importance.
Although any interatomic potential function permits
only an approximate description of a given material, it is
essential to precisely determine Tm ' Using MD methods
to determine the temperature-dependent free energies for
the crystalline and liquid phases, Broughton and Li
obtained a value of Tm = 1691 ± 20K for the Stillinger­
Weber potential. That this value is quite close to the
known melting point of silicon (1683K) indicates that
both the Stillinger-Weber potential function and the
molecular-dynamics approach are valid for the study of
melting.

A typical molecular-dynamics simulation cell con­
tains several hundred or a few thousand atoms, at most.
The basic information that one obtains from such
simulations includes, most importantly, the positions and
velocities of all the atoms in the system at any instant dur­
ing the simulation. These variables are obtained by
numerically solving Newton's equations of motion for a
system of many interacting atoms. Within the limitations
of any simulation (pertaining to the approximate nature
of the interatomic potential used, and the finite system size
and duration of the simulation), the atom positions are
like the recorded output of a hypothetical atomic camera,
operating with a field of view spanning a distance of no
more than about 100 A. at a speed of 1014 to 1015 frames
per second. On such microscopic scales, one can locate
unambiguously the position of each atom and follow its
motion as it interacts with its neighbors. In the case of sili­
con we have chosen a time interval of 1.15X 10-15 s over
which Newton's equations of motion are integrated in
each time step of the simulation. With lattice-vibration
frequencies of typically about lO13s- 1 for Si, a simulation
interval of 1000 time steps ( = 1.15 ps) covers approxi­
mately 10 vibration periods of each atom.

The purpose of our simulations is to isolate the effects
of surfaces and interfaces, and to elucidate the kinetics of
the melting process. To investigate the roles played by
internal and external surfaces, we have carried out a series
of molecular-dynamics simulations of the melting of
crystalline silicon, with and without such extrinsic defects,
at elevated temperatures. Three model geometries will be
considered; the first two focus on the role of grain
boundaries and free surfaces, while in the third we
investigate the melting behavior of a defect-free perfect
crystal. The simulation-cell dimensions, including the
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number of simulated atoms in the cell, will be chosen to be
the same in all three situations, thus eliminating any
effects which might possibly arise from different dimen­
sions of the simulation cell as well as numbers of atoms in
the cell.

We first investigate the effect of the grain boundary,
followed by a simulation of the free (110) surface, in the
onset of melting. The planar arrangement of atoms in the
rectangular unit cell on the (110) plane is illustrated in
Figs.l and 2. As far as the simulation of melting is
concerned, this choice of (110) planes has the advantage
that their interplanar spacing, d( 110) = O.354a, is much
larger than the vibrational amplitudes of the atoms, which
are typically no more than about 10% of the nearest­
neighbor distance of 0.433a even at the highest tempera­
tures. Here, a is the lattice parameter defined in Fig.1.

Order Parameter for the Melting
Transition

Before discussing our simulation results, an order
parameter, representing a quantitative measure for char­
acterizing the crystalline and melted regions, has to be
defined. If melting were to begin at the surfaces or grain
boundaries, then in order to distinguish crystalline from
melted regions, it would appear natural, for the purpose of
analysis, to subdivide the computational cell into a finite
number of slices parallel to the surface or grain boundary
and to define some order parameter, t, which character­
izes quantitatively the degree of crystallinity within each
slice. As is common in the area of phase transformations, t
should be defined such that it varies within the bounds
O<t<1.

The static structure factor, S(k), is essentially the
Fourier transform of the distribution of bond lengths, and
may be considered as an order parameter of the
crystalline-to-liquid phase transition. From x-ray struc­
ture determinations, S(k) is well known to characterize
the long-range order in the direction of any vector, k,
which is a vector of the reciprocal space lattice. The
vectors of this lattice are related to the position vectors, r, ,
of the atoms in the real-space lattice by the familiar Ewald
relationship:

(I)

Being a complex function, with a real and an
imaginary part, S(k) directly does not satisfy the
requirements imposed on the order parameter f How­
ever, its square, given by

[S(k)]2 = 1S(k) 1
2= [liN ~i cos(k-r] )]2 +

[lIN~isin(kori)F, (2)

varies between zero and one, depending on the values of
(k-r.) which range between zero and 21T. We note that
the summation in Eq. (2) includes all atoms i in the
crystal, with k being some arbitrary vector. One readily
sees that if k is, indeed, a reciprocal-lattice vector,
satisfying Eq.(I), then Eq. (2) yields [S(k)]2 1. Since
we are interested in the planar long-range order parallel to
the (110) planes (rather than the overall static structure
in Eq. (2», we define a planar static structure factor,
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S, (k), the square of which represents the desired order
parameter, according to

in which only atoms i = i(p) in a given lattice plane, p, are
considered. (As discussed below, in all of our simulations
p will vary within the range 1.;;p.;;32.) For a perfect
crystal lattice at zero temperature, t is identically equal to
one for any wave vector, k, which is a reciprocal lattice
vector in that plane. By contrast, in the liquid state,

Fig.3: Ideal-crystal computational cell of 704 atoms,
stacked in 32 (110) planes, each containing 22 Si atoms.
The limits of the cell are indicated by the gold box, beyond
which 3-d periodic border conditions are applied to
simulate an infinitely large perfect crystal. After gradually
heating to l600K (i.e., 91K below Tm for the Stillinger­
Weber potential), all atoms have the ideal-crystal coordi­
nation of four. Here and in subsequent figures, the color of
atoms indicates their nearest-neighbor coordination K,
with red, blue and green denoting, respectively, K = 4,
K.;;3 and K>5.

The plane-by-plane profile of the order parameter,
S(k), at 1600K is shown on the left for a reciprocal lattice
vector, k, in the < 110> direction within each of the
(110) planes (seeEq. (3». ThevaluesofS(k) near unity
illustrate the large degree of crystalline long-range
ordering within the (110) planes, in spite of the
substantial thermal vibrations of the atoms at this very
high temperature.

t [S, (k) ]? = [liN ~j(P) cos(k-r, ) F
+ [lIN~i(p) sintk-rj ) ]2, (3)

Fig.4: Definition of the fivedegrees of freedom of a general
grain boundary contained in a bicrystal. Far from the
boundary plane in the direction of the interface-plane
normal, the inhomogeneous region containing the inter­
face is on both sides embedded between perfect-crystal
material.

without any long-range order in the planes, t fluctuates
near zero. As a reminder of its association with the static
structure factor, in the following the order parameter will
be denoted simply by S(k) (-t).

When the crystal is heated from absolute zero, the
value ofS(k) is reduced slightly from unity because of the
lattice vibrations. This effect is illustrated in Fig.3 for a
crystal containing a total of 704 Si atoms (arranged in 32
(110) planes, each of which contains 22 atoms in the rect­
angular planar unit cell; the reason for the choice of this
particular unit cell will become more apparent below). In
this simulation, as is common in MD simulations, three­
dimensional (3-d) periodic border conditions were ap­
plied to the simulation cell in order to approximate an infi­
nitely large crystal. The crystal shown in Fig.3 was slowly
heated from zero temperature to l600K, which is 91K
below the thermodynamic melting point for the Stillinger­
Weber potential. At this temperature all atoms are
perfectly coordinated, with four nearest neighbors. The
plane-by-plane order parameter, shown in the left of the
figure, demonstrates a typical reduction by about 10
percent at this elevated temperature due to the lattice
vibrations. The reduction in S(k) from unity is governed
by the so-called Debye-Waller factor which represents a
measure for the average vibrational amplitude of the
atoms at a given temperature.
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Role of Grain Boundaries
Grain boundaries are of considerable interest in the

context of melting because most real materials are
polycrystals. A grain boundary is generally characterized
by five geometrical degrees offreedom (OOF) defined in
Fig.4, which illustrates the formation of a bicrystal, with
the grain boundary (GB) in its center, by joining two
single crystals along two well-defined crystallographic
planes. We recall that any crystallographic direction, ft,
given for example .in terms of Miller indices, <h,k,l > ,
represents two OOF, according to

(4)

As illustrated in Fig.4, the characterization of the 5 OOF
of the grain boundary starts with defining the GB-plane
normal, il, in each of the two principal coordinate
systems, (x., Yl' Zl) and (x2, Y2' Z2)' associated with the
two halves of the bicrystal. For example, the GB-plane
normal ill in the first of the two semicrystals might be a
< 110> direction while in the other crystal the normal,
il2, might be a < 111> direction.
With the GB-plane normal thus fixed with respect to the
two crystals (and thus having defined four ofthe 5 OOF),
the only remaining OOF is the one associated with a so­
called twist rotation about il, characterized by the twist
angle () (see Fig.4). The 5 OOF of a general grain
boundary may then be summarized as follows:

(5)

In a symmetrical grain boundary, ill and il2 represent the
same set of crystallographically equivalent lattice planes
(i.e., ill = il2), leaving only three OOF, namely il and fJ.

The GB we have studied is symmetrical, with the GB
plane being a (110) plane. To introduce the GB into the
bicrystal, the one half is rotated by ()= 50.48° with respect
to the other about the < 110> plane normal. In terms of
Eq. (5) this interface is therefore characterized by
{OOF} = {< 110>, < 110>, 50.48°}. In the jargon of
the grain-boundary community, this boundary is referred
to as the (110) 50.48° (~ll) twist boundary. The value of
~ indicates that the area of its planar unit cell is ~ = 11
times larger than that of a perfect-crystal (110) plane in
Si (see Figs.1 and 2). The unit-cell dimensions of this GB,
illustrated in Fig.5, explain our earlier choice of simula­
tion cells for the perfect-crystal simulation: this choice
renders the simulation-cell dimensions identical for the
perfect crystal, the thin slab and the bicrystal, the only dif­
ference arising from the different border conditions
imposed on this cell.

Similar to Fig.3, each of the 32 (110) planes in the bi­
crystal contains 22 atoms. With an interplanar spacing of
(110) planes in Si of d(1lO) = 0.354a, the length of the
computational cell is 11.33a. The planar unit-cell area of
2.345aX3.3l7a=7.778a2 is 11 times that of the corre­
sponding primitive planar unit cell indicated in Fig.I.
(Notice that the planar dimensions in both the primitive
and the simulation cell are related by yl2.) The
computational cell thus contains 704 Si atoms in a volume
of 88.l29a3

.
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Fig.5: (11O)() = 50.48° bicrystal ofSi at zero temperature.
The bottom half of the bicrystal has the same orientation
as the computational cell used in the perfect-crystal and
thin-slab simulations (see Figs. 3 and 8). The upper half
of the bicrystal is rotated by ()= 50.48° about the < 110>
common grain-boundary plane normal. The atoms in the
top plane of each half of the bicrystal are colored in yellow
to highlight their relative rotation. For illustrative
purposes, in this and in the following figure, the top and
bottom halves of the bicrystal are separated, so as to make
the evolution of the system more clear. As discussed in the
text, the two wave vectors, k, and k2 , in the order
parameters S(k l ) and S(k2 ) (indicated, respectively, in
red and blue in the left of the figure) represent reciprocal
planar lattice vectors in the related half of the bicrystal. At
zero temperature, in semicrystal 1 we then have,
S(k l ) = 1 and S(k 2 ) = 0 whereas in semicrystal 2,
S(k2 ) = 1 and S(k l ) = O.

Far from the interface, which is characterized by a 2­
d periodic arrangement of atoms parallel to the GB plane,
any grain boundary is surrounded by perfect-crystal
material. As in the thin-film simulations discussed later,
we apply 2-d periodic border conditions in the interface
plane to simulate the infinite size of the bicrystal parallel
to the GB plane. However, in the direction of the GB­
plane normal neither the free borders of the thin film nor
the periodic borders of the perfect crystal are appropriate.
By surrounding the simulation cell on both sides of the
grain boundary with rigid perfect-crystal blocks which are
allowed to slide parallel and perpendicular to the interface
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Fig.6: Heterogeneous "thermodynamic melting" of a
silicon bicrystal containing in its center the (110)
(J = 50.48° (~11) grain boundary. After having been
heated over a period of 600 time steps from 1600K
(T <Tm ) to 2200K (T> Tm ) , the time was reset to t = O.
1000 time steps corresponds to 1.15 psec of real time. The
color of the atoms indicates their nearest neighbor
coordination K, with red, blue and green denoting,
respectively, K = 4, K<:3 and K;;;>5.
(a) At t = 0 (i.e., immediately after the simulation
temperature of 2200K was reached), there are a number
of atoms at the grain boundary that already have

coordination greater than four. The order parameters
show, however, the sharp definition of the GB region
containing only about 4 (110) planes.
(b) After 2700 time steps, a number of planes on either
side of the GB plane have melted. The near-zero values of
the structure factor show that long-range order has now
broken down in approximately seven (110) planes closest
to the GB.
(c) After 5400 time steps more planes have melted.
(d) After 8100time steps over half of the system has melt­
ed; long-range order has been lost in the 20 central planes
of the system.
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plane, thus enabling both GB migration and a volume
expansion at the boundary, we have recently developed a
border condition which permits a realistic simulation of
"bulk" interfaces, i.e., interfaces embedded between
perfect material.

In contrast to the perfect-crystal, two order param­
eters are now required to investigate the breakdown of
planar crystalline order upon melting, one associated with
each half of the bicrystal. By choosing two wave vectors,
k, and k2 , which are reciprocal lattice vectors in the
(110) planes associated with the two semicrystals, we
define the order parameters S(k1 ) and S(k2 ) in analogy
to Eq. (3). (k, and k2 are thus simply related by the
relative rotation of the two halves of the bicrystal about
the < 110> GB-plane normal.) By monitoring these two
order parameters, every lattice plane may then be
characterized as either being totally disordered (for
S(k 1 ) zS(k2 ) zO), as belonging to semicrystal 1 (for
S(k1 ) z 1, S(k2 ) zO), or as belonging to semicrystal 2
(for S(k2 ) z 1, S(k() z 0). A slice-by-slice order­
parameter profile (illustrated in Fig.5 for zero tempera­
ture) then shows a sudden drop at the GB in S(k1 ) from
unity to zero (red symbols in the left of Fig.5) , while
S(k2 ) increases simultaneously from zero to one (blue
symbols) .

To investigate the high-temperature behavior of the
bicrystal, the system was first equilibrated at 16ooK. The
temperature was then stepped up rather rapidly in
intervals of lOOK, allowing 100 time steps for approxi­
mate equilibration, until the desired final simulation
temperature, ranging between 1800K and 2200K, was
reached; this instant will be labeled t = O. As already
mentioned, the average atomic coordination increases
from four to approximately six upon melting. To illustrate
the different local environments of the atoms in the bulk, a
surface or in the liquid, throughout our discussion red
atoms will indicate perfect-crystal coordination (K = 4),
with green atoms indicating K > 4 while for blue atoms
K<4.

The response of the bicrystal when heated to a
temperature above Tm is shown in the four snapshots in
Fig.6, which is characteristic of all of our grain-boundary
simulations. It appears that melting begins at the grain
boundary, from which the melted layer then spreads into
the bulk regions. The snapshot at t = 0 (i.e., immediately
after reaching the desired simulation temperature) illus­
trates two important features. First, as indicated by the ab­
sence of blue atoms, all Si atoms near the GB are at least
four-fold coordinated. The presence of a significant
number of green atoms suggests that numerous atoms
near the GB have already reached liquid-like coordination
during the short heating period above Tm ' Second, as
demonstrated by the crossing of S(k1 ) and S(k2 ) in the
left of Fig.6, and by the narrow region of only about four
(110) planes in which the order parameters deviate
significantly from unity, the GB is sharply defined, as
sharply as it was prior to raising the temperature from
1600K to a temperature above Tm •

The order parameters in the left of Figs.6(b)-(d)
clearly show the propagation of two interfaces which
separate areas of well-ordered (110) planes from areas
with no planar long-range order at all (and, consequently,
with S(k) fluctuating near zero). A detailed analysis of
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Fig.7: Propagation velocities of the solid-liquid interfaces
as a function of temperature. The red curve, representing a
quadratic fit to the data points, extrapolates to zero
velocity at T = 1710± 30K, as compared with the
thermodynamic melting temperature of the Stillinger­
Weber potential of Tm = 1691 ± 20K.

the atom positions in the direction of the GB-plane normal
shows the breakdown of a planar atom arrangement in the
regions with vanishing order parameter. That the
disordered region is, indeed, liquid (and not merely
disordered like in an amorphous solid ) was verified in two
ways. First , the related volume contraction upon melting
agrees well with that determined from an independent
simulation of liquid silicon. Second, the plane-by-plane
mean-square displacements, < r2 >, of the atoms are
found to increase linearly with simulation time in the
disordered regions, but to be practically constant in the
crystalline regions away from the GB. In MD simulations,
such a linear increase in < r2 >, associated with the
random walk of the atoms during self-diffusion, is
considered a fingerprint of a liquid. Moreover, the value of
the self-diffusion constant extracted from the slope of
< r2 > versus t is in good agreement with that determined
from separate simulations of the liquid at the same
temperature. We therefore conclude that the disordered
regions are, indeed, liquid.

The above simulations reveal that melting begins at
the grain boundary from which the liquid phase penetrates
into the crystalline region via the propagation of two solid­
liquid interfaces. To actually follow the movement of these
interfaces requires a certain amount of data analysis
because the atoms move continuously, and the position of
the interface is not always easy to determine. Neverthe­
less, from the results of our simulations at several
temperatures above Tm s propagation velocities for the
spreading of the solid-liquid interfaces into the crystalline
regions, v, can be extracted. In Fig.7 these velocities are
plotted as function of temperature. Extrapolation of these
temperature-dependent velocities to zero velocity should
yield an estimate of the coexistence temperature, Tm > at
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Fig.8: Evolution with time of a thin slab with (110) faces
after having been heated over a period of 600 time steps
from 1600K (T<Tm ) to 2200K (T>Tm ), at which
instant the time was reset to t = O. 1000 time steps
correspond to 1.15 psec of real time. The color of the
atoms indicates their nearest-neighbor coordination K,
with red, blue and green denoting, respectively, K = 4,
K <:3 and K>5.
(a) At t = 0 most atoms on the surfaces are three-fold co­
ordinated (blue balls), due to the removal of one nearest
neighbor on creation of the free surface. A few surface
atoms have already become greater than four-fold
coordinated during the 500 time steps during which the
system was at T> Tm •

(b) After 2700 time steps more atoms are liquid-like

coordinated (green balls), although the liquid region has
hardly spread into the bulk. Note however, that the
structure factor shows the breakdown of in-plane long­
range order for a number of planes away from the
surfaces.
(c) After 5400 time steps there are significant regions of
melted material near the two free surfaces. As indicated
in the order parameter, a thermal fluctuation has
apparently caused a small amount of recovery in the long­
range order of the system near the lower free surface.
(d) After 8100 time steps approximately half the system
has melted, as indicated by the near-zero values of the or­
der parameter for a number of planes near each of the two
free surfaces.
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Because the imposed strain is tensile, the resulting volume
change of the prism,

The condition that v";;;0.5 therefore requires that C\2
cannot exceed C I I . At the instability point, at which

(6)

(8)

v = (ad/d) I (aliI)

has to be positive, i.e., 0,,;;;v";;;0.5. For a single crystal with
cubic symmetry, v may be expressed in terms of C ll and
C\2 as follows:

sion kinetics. Melting is therefore a relatively slow
heterogeneous process nucleated at internal or external
surfaces. The propagation velocities in Fig.7, typically of
the order of a few dozen m/s, are of the same order of
magnitude as the velocities obtained from laser-annealing
experiments on Si. Given a value, say, of lOOmis, obtained
at - 500K above the melting point (see Fig.7), a single
crystal lcm in diameter would require approximately
50,us to melt. This value indicates that melting is by no
means an instantaneous process. Also, since our simula­
tion cells contained no intrinsic lattice defects, the above
simulations question the validity of theories of melting
based on the presence of such defects.

Melting ofa Defect-Free Crystal
In computer simulations, thermodynamic melting is

easily suppressed by elimination of extended defects, for
example, via the application of 3-d periodic border
conditions to the perfect-crystal simulation cell in Fig.3.
Experimentally, due to the presence of free surfaces and,
in most materials, a sufficient atomic concentration of
lattice dislocations, superheating is extremely difficult to
achieve as discussed earlier.

Over half a century ago Born pointed out the
existence of an absolute limit to superheating of any
crystalline substance. By considering the volume depen­
dence of the normal modes of a crystal lattice, he
demonstrated the existence of a phonon instability at a
certain critical volume of the system. By couching the
discussion in terms of the elastic constants (which are
known to be intimately connected with the long-wave­
length lattice vibrations), Born's phonon instability can be
shown to correspond to an elastic instability in the shear
constant C44 which, for a crystal lattice with cubic
symmetry and in the proper coordinate system, is given by
(C II -C\2 )/2. This instability, occurring when CII and
C\2 become equal, signifies no resistance of the crystal
lattice to certain shear strains.

The physical meaning of Born's limit becomes
particularly apparent when we consider the Poisson ratio,
v, which together with Young's and the shear modulus is
needed to characterize the elastic performance of engi­
neering materials. When a tensile strain, E = aliI, is
imposed on a tetragonal prism of length 1 and square
lateral dimensions d, the consequent contraction, adld,
perpendicular to the direction of the applied stress is
governed by the Poisson ratio, defined by

which the crystal and liquid are in thermodynamic
equilibrium, and at which, therefore, the solid-liquid
interface will not propagate. The temperature so obtained
from Fig.7 is 1710± 30K, in remarkable agreement with
the temperature of 1691 ± 20K obtained from the free­
energy analysis of Broughton and Li.

We conclude from the above evidence that above Tm

the grain boundary nucleates the liquid phase which
subsequently grows into the crystal, a process requiring
thermally-activated diffusion kinetics.

Effect of Free Surfaces
Rather than investigating a single isolated free

surface attached to a practically infinite bulk perfect
crystal underneath, we consider a thin slab, consisting of
32 (110) planes of atoms, with the outermost planes
representing free surfaces. The initial separation between
the surfaces (i.e. without atomic relaxations nor thermal
expansion) is l1.33a. This film thickness was found to be
large enough to ensure that the two surfaces do not
interact noticeably over the duration of the simulation
00,000 time steps z 11 ps). In contrast to the
simulation of the defect-free perfect crystal and the
bicrystal, the border conditions imposed on the simulation
cell are now chosen to be periodic only in the two
dimensions parallel to the free surfaces, with the latter
surrounded by vacuum.

The thin film was heated to 2200K using the same
procedure as that used in the grain-boundary studies.
Figure 8, characteristic for all of our thin-film simulations,
shows four snapshots of the system starting immediately
after the desired simulation temperature of 2200K was
reached. The snapshot at t = 0 illustrates the relatively
poor coordination of the atoms in the free surface (blue
atoms), in contrast to the perfectly coordinated atoms in
the interior region of the slab. The order parameter in the
left of the figure, well above 0.5 throughout the simulation
cell, indicates a well-ordered planar arrangement of the
atoms. The smaller values at the two surfaces are
primarily due to the larger vibrational amplitudes of the
surface atoms.

The following snapshots after 2700, 5400, and 8100
time steps demonstrate the rapid increase in the number of
atoms with coordination in excess of four, suggesting that
the surface regions have actually melted. As in our grain­
boundary simulations, we have verified that the atoms are,
indeed, in the liquid state by determining the diffusion
coefficient in the disordered region. The spreading
velocities extracted from these simulations are statistically
identical to those obtained from the analysis of the grain­
boundary simulations.

One might ask whether other extended defects can
also act as nucleation centers. This question was investi­
gated in a similar melting study for the face-centered cubic
metal copper. In this work we considered the effect of
voids of various sizes, with the main conclusion that a void
is, indeed, able to nucleate the liquid provided it is large
enough and relatively immobile.

From the above evidence, we conclude that above Tm

grain boundaries, free surfaces or voids (and we may
reasonably expect, lattice dislocations as well) can
nucleate the liquid phase which subsequently grows into
the crystal-a process requiring thermally-activated diffu-
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(a) (h)

lc) (d)

Fig. 9: Homogeneous "mechanical melting" of the defect­
free perfect crystal of Fig. 3, realized via application of 3-d
periodic border conditions. Although the unit-cell dimen­
sions are identical to those of the bicrystal in Fig. 4 and of
the thin slab in Fig. 8, the 3-d periodic border conditions
produce effectively an infinitely large perfect crystal. A
comparison with Figs. 6 and 8 demonstrates how rapidly .
the process of mechanical melting takes place by compari­
son with the thermodynamic melting mechanism. Figs.
9 (a) -(d) also demonstrate that the process occurs
homogeneously, in contrast to the nucleation-and-growth
controlled mechanism of thermodynamic melting.

(a) Only 100 time steps after reaching the simulation
temperature, a number of defected, i.e., not perfectly
coordinated atoms is found to be scattered randomly
throughout the system. Note that the long-range order has
practically broken down already throughout the entire
crystal, as evidenced by the near-zero values of the related
order parameter, S(k), in the left of the figure.

(b) -(d) After 600, 1100, and 1600 time steps, respective­
ly, more and more liquid-like coordinated atoms are found
in the simulation cell, and the order parameter fluctuates
near zero.
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Cn = C12 (and therefore v>0.5), the volume of the
crystal would actually decrease under tension (rather than
increase).

Given that, due to anharmonic effects, virtually all
materials expand upon heating, Born's criterion estab­
lishes the existence of a maximum volume expansion of a
superheated crystal lattice, coupled with a maximum
superheating temperature, above which the crystal is
mechanically unstable and therefore has to undergo some
kind of phase transformation (into the liquid state or into
some other crystal structure). The temperature associated
with the maximum superheating limit under zero external
pressure (thus including the effects of thermal expan­
sion), is referred to as the mechanical melting point, T,; to
be distinguished from the thermodynamic melting tem­
perature, Tm ' (The subscript "s" refers to "stability".)

In our simulations of metals, the evaluation of C l l

and C12 gives typical values of T, about 20% above T rn '

By contrast, we estimate T, in Si to exceed Tm by as much
as 40% (i.e., T, -2500K). In practice it is very difficult,
even in simulations, to reach T, because of statistical
fluctuations in the volume and temperature of the system.
By gradually stepping up the temperature, we were able to
superheat a perfect Si crystal to 2400K, i.e., 700K above
Tm; beyond this temperature the crystal could not be
stabilized.

Analogous to the free-energy calculation which
predicts Trn s the determination of T, does not provide
information on the mechanism by which the crystalline
order breaks down. To investigate this mechanism, we
have simulated the melting of a defect-free crystal.
Figs.9(a)-(d) illustrate how rapidly the perfect crystal
melts above Ts . After a step increase of the simulation
temperature from below T, to 2500 K, only a few hundred
MD time steps (i.e., only a few lattice-vibration periods)
are required to completely destroy the long-range order
within the (110) planes. Moreover, the order-parameter
profiles in Figs.9(a)-(d) show that planar order is lost
simultaneously in all parts of the crystal. This evidence
suggests that the liquid phase is formed homogeneously.

The above simulation shows clearly the phenomenon
of superheating. The reason that it is so easily visible by
simulation, in contrast to experiments, is due to the fact
that, via the application of 3-d periodic border conditions,
surfaces are easily eliminated entirely from the simulation
cell.

Characteristics ofThermodynamic
and Mechanical Melting

The above simulations illustrate that every crystal, in
principle, has two melting points, Tm and Ts • Conceptual­
ly the two transitions have distinct physical origins: while
thermodynamic melting is governed by the free energies of
the liquid and the solid phases, mechanical melting is
based on a phonon instability. Since at ambient pressure,
the volume expansion required for mechanical melting is
always larger than that associated with thermodynamic
melting, the free energy always favors thermodynamic
over mechanical melting; i.e., T, > T rn ' However, as
illustrated above, the former requires atomic mobility, and
may therefore be kinetically hindered. If a crystal is
melted under atmospheric conditions, the thermodynamic
state variables usually will be such that high atom mobility
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in the liquid enables the nucleation and growth of the
liquid phase at extended defects. However, if for example
by uniformly expanding the crystal, melting is induced at
a lower temperature, the consideration of limited atom
mobility as a possible hindrance to phase change may be of
significant importance. The crystal may, indeed, not be
able to disorder at the volume specified by equilibrium
thermodynamics until a larger volume is reached where
the mechanical instability can occur.

There is considerable experimental evidence that
solid-state amorphization, the process in which the long­
range crystalline order is destroyed by external means
(such as mechanical or chemical means, or by irradia­
tion), can proceed by the same two distinct mechanisms as
melting and that, in contrast to conventional melting, both
types of transition can actually be observed. In a typical
melting experiment, the order-disorder transition is
induced by increasing the temperature (T) under ambient
pressure (P), thus allowing the volume (V) to expand, a
procedure guaranteeing high atom mobility at the point
(T, P(V)) in thermodynamic phase space where the
transition can occur. In a typical solid-state amorphiza­
tion experiment, by contrast, the temperature is held fixed
at some relatively low value, well below Tm ' The role of
the irradiation, or of the mechanical or chemical means, in
inducing the crystal-to-amorphous transition is to expand
the crystal lattice to the coexistence point in phase space
where the thermodynamic transition can, in principle,
occur. However, relatively low atom mobility gives rise to
a competition between the heterogeneous and homoge­
neous processes, a competition governed by the level of
atomic mobility at that point in phase space. Hence, while
at higher temperatures mechanical amorphization will be
preempted by the thermodynamic type of transition, at
lower temperatures this type of transition may be
kinetically hindered due to the reduced atom mobility.
However, at an even larger volume expansion than that at
the thermodynamic coexistence point at a fixed tempera­
ture, the ultimate stability limit of the crystal may be
reached, thus enabling a fast, homogeneous transition into
the liquid state. Due to the low atomic mobility this non­
crystalline state appears to be solid, although it merely
represents a kinetically arrested liquid.

Let us summarize the three main distinguishing
characteristics of thermodynamic and mechanical melt­
ing.

(a) Whereas thermodynamic melting is based on the free
energies of both the crystalline and liquid states, mechani­
cal melting is triggered by a phonon instability.

(b) Thermodynamic melting is a heterogeneous process,
involving nucleation and growth of the liquid phase at
extended defects, whereas mechanical melting takes place
homogeneously, without the need for the presence of
lattice defects.

(c) The growth of the liquid phase into the crystal (by
propagation of solid-liquid interfaces) requires thermally­
activated diffusion kinetics in the liquid. Mechanical
melting, by contrast, takes place typically within a few
lattice vibration periods independent of temperature.
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In concluding we point out that, in our view, the
present study provides an illustration of several unique
features of atomistic simulation, namely the abilities to
prescribe precisely the initial system configuration, to
control the dynamic environment during the simulations,
and to follow the system response in complete detail, all at
the atomic level. It seems clear that in future simulation
studies of complex physical phenomena these capabilities
will be explored to an even greater extent. In doing so one
should keep in mind that the significance of the simulation
results is always limited by the reality of the interatomic
potential function used. For this reason one should look
for insight from simulation rather than merely numerical
results.
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