# MD simulation of Ar-Cu thermal conductivity # Initialization units lj dimension 3 newton on boundary p p p atom_style atomic neighbor 0.3 bin neigh_modify check yes lattice fcc 0.844 region box block -5 5 -5 5 -5 5 units lattice create_box 2 box create_atoms 1 box region sphere sphere 0.0 0.0 0.0 2.24496536486836 units box delete_atoms region sphere lattice fcc 3.35456791535199 create_atoms 2 region sphere group cu region sphere group ar type 1 mass 1 1.0 mass 2 1.59053218754711 mass0 6.633e-26 epsilon0 1.67e-21 sigma0 3.405e-10 velocity all create 0.71 458127641 mom yes rot yes dist gaussian units box # Tersoff potential ********************************************************* pair_style lj/cut 2.8 pair_modify mix arithmetic pair_coeff 1 1 1.0 1.0 # LJ parameters for Ar-Ar pair_coeff 2 2 39.2964071856287 0.686549192364170 # LJ parameters for Cu-Cu fix nvt_ar ar nvt 0.71 0.71 0.05 fix nvt_cu cu nvt 0.71 0.71 0.05 thermo_style custom step temp etotal vol thermo_modify lost warn thermo 1 # Run timestep 0.0005 run 100000 unfix nvt_ar unfix nvt_cu fix nve all nve run 100000 reset_timestep 0 compute myPE all pe/atom pair compute flux all heat/flux_h myPE 10000 ntimestep 100 #log flux.log variable J1 equal c_flux[1]/vol variable J2 equal c_flux[2]/vol variable J3 equal c_flux[3]/vol thermo_style custom step temp v_J1 v_J2 v_J3 restart 100000 restart.* run 1000000