The formula from the LAMMPS documentation (See http://lammps.sandia.gov/doc/pair_eam.html):

$$E_{i} = F_{\alpha} \left(\sum_{j \neq i} \rho_{\alpha\beta}(r_{ij}) \right) + \frac{1}{2} \sum_{j \neq i} \phi_{\alpha\beta}(r_{ij})$$

I am confused a little with it.

I think in your notation it should be like this:

$$E_{i} = F_{\beta}\left(\sum_{i\neq j} \rho_{\alpha\beta}\left(r_{ij}\right)\right) + \frac{1}{2}\sum_{i\neq j} \phi_{\alpha\beta}\left(r_{ij}\right),$$

where β means type of *i*-atom, α is type of *j*-atom, r_{ij} is a distance between atom *i* and *j*, $\phi_{\alpha\beta}(r_{ij}) \equiv \phi_{\beta\alpha}(r_{ij})$ is a pair-wise term of potential.

The target atom is marked as $\,eta$, source atom $\,lpha$.

For example of Fe and H, $\rho_{\rm HFe}$ means electron density induced by H-atom to site on Fe-atom.

In case of Fe-type of *i* -atom it should be used F_{Fe} , ρ_{FeFe} , ρ_{HFe} .

Am I right thinking this way?

I think so because of the provided file format:

- density function rho(r) for element I at element 1 (Nr values)
- density function rho(r) for element I at element 2
- **•** .
- density function rho(r) for element I at element Nelement

Thank you.