/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Yidong Xia Ref. P.B. Warren Vapour-liquid coexistence in many-body dissipative particle dynamics Phys. Rev. E 68, 066702 – Published 18 December 2003 ------------------------------------------------------------------------- */ #include "math.h" #include "stdio.h" #include "stdlib.h" #include "pair_mdpd.h" #include "atom.h" #include "atom_vec.h" #include "comm.h" #include "update.h" #include "force.h" #include "neighbor.h" #include "neigh_list.h" #include "random_mars.h" #include "domain.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; #define EPSILON 1.0e-10 #define PI 4.0*atan(1.0) /* ---------------------------------------------------------------------- */ PairMDPD::PairMDPD(LAMMPS *lmp) : Pair(lmp) { writedata = 1; random = NULL; nmax = 0; rho = NULL; // set comm size needed by this Pair comm_forward = 1; } /* ---------------------------------------------------------------------- */ PairMDPD::~PairMDPD() { memory->destroy(rho); if (allocated) { memory->destroy(setflag); memory->destroy(cutsq); memory->destroy(cut); memory->destroy(gamma); memory->destroy(sigma); memory->destroy(A); memory->destroy(B); memory->destroy(rd); } if (random) delete random; } /* ---------------------------------------------------------------------- */ void PairMDPD::compute(int eflag, int vflag) { int i,j,ii,jj,m,inum,jnum,itype,jtype; double wrho,xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair; double vxtmp,vytmp,vztmp,delvx,delvy,delvz; double rsq,r,rinv,dot,wd,randnum,factor_mdpd; int *ilist,*jlist,*numneigh,**firstneigh; evdwl = 0.0; if (eflag || vflag) ev_setup(eflag,vflag); else evflag = vflag_fdotr = 0; double **x = atom->x; double **v = atom->v; double **f = atom->f; int *type = atom->type; int nlocal = atom->nlocal; int nall = nlocal + atom->nghost; double *special_lj = force->special_lj; int newton_pair = force->newton_pair; double dtinvsqrt = 1.0/sqrt(update->dt); double kbt = force->boltz*temperature; // grow local arrays if necessary, and need to be atom->nmax in length if (atom->nmax > nmax) { memory->destroy(rho); nmax = atom->nmax; memory->create(rho,nmax,"pair:rho"); } inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // zero out density if (newton_pair) for (i = 0; i < nall; i++) rho[i] = 0.0; else for (i = 0; i < nlocal; i++) rho[i] = 0.0; // first loop over neighbors of my atoms to calculate the density for (ii = 0; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; jtype = type[j]; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; r = sqrt(delx*delx + dely*dely + delz*delz); if (r < rd[itype][jtype]) { if (domain->dimension == 2) { error->all(FLERR,"Weight density function has not been implemented for 2D"); } else { wrho = 7.5/PI/pow(rd[itype][jtype],3)*pow(1.0-r/rd[itype][jtype],2); rho[i] += wrho; if (newton_pair || j < nlocal) rho[j] += wrho; } } } } // communicate densities comm->forward_comm_pair(this); // second loop over neighbors of my atoms to calculate the force for (ii = 0; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; vxtmp = v[i][0]; vytmp = v[i][1]; vztmp = v[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_mdpd = special_lj[sbmask(j)]; j &= NEIGHMASK; jtype = type[j]; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; if (rsq < cutsq[itype][jtype]) { r = sqrt(rsq); rinv = 1.0/r; delvx = vxtmp - v[j][0]; delvy = vytmp - v[j][1]; delvz = vztmp - v[j][2]; dot = delx*delvx + dely*delvy + delz*delvz; wd = 1.0 - r/cut[itype][jtype]; randnum = random->gaussian(); // conservative force = Eq. (21) in Ref. // drag force = -gamma * wd^2 * (delx dot delv) / r // random force = sigma * wd * rnd * dtinvsqrt; fpair = A[itype][jtype]*wd; if (r < rd[itype][jtype]) fpair += B[itype][jtype]*(rho[i]+rho[j])*(1.0-r/rd[itype][jtype]); fpair -= gamma[itype][jtype]*wd*wd*dot*rinv; fpair += sigma[itype][jtype]*wd*randnum*dtinvsqrt; fpair *= factor_mdpd*rinv; f[i][0] += delx*fpair; f[i][1] += dely*fpair; f[i][2] += delz*fpair; if (newton_pair || j < nlocal) { f[j][0] -= delx*fpair; f[j][1] -= dely*fpair; f[j][2] -= delz*fpair; } if (eflag) { // unshifted eng of conservative term: evdwl = 1.0; evdwl *= factor_mdpd; } if (evflag) ev_tally(i,j,nlocal,newton_pair, evdwl,0.0,fpair,delx,dely,delz); } } } if (vflag_fdotr) virial_fdotr_compute(); } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairMDPD::allocate() { allocated = 1; int n = atom->ntypes; memory->create(setflag,n+1,n+1,"pair:setflag"); for (int i = 1; i <= n; i++) for (int j = i; j <= n; j++) setflag[i][j] = 0; memory->create(cutsq,n+1,n+1,"pair:cutsq"); memory->create(cut ,n+1,n+1,"pair:cut" ); memory->create(gamma,n+1,n+1,"pair:gamma"); memory->create(sigma,n+1,n+1,"pair:sigma"); memory->create(A,n+1,n+1,"pair:A"); memory->create(B,n+1,n+1,"pair:B"); memory->create(rd,n+1,n+1,"pair:rd"); } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairMDPD::settings(int narg, char **arg) { if (narg != 3) error->all(FLERR,"Illegal pair_style command"); temperature = force->numeric(FLERR,arg[0]); cut_global = force->numeric(FLERR,arg[1]); seed = force->inumeric(FLERR,arg[2]); // initialize Marsaglia RNG with processor-unique seed if (seed <= 0) error->all(FLERR,"Illegal pair_style command"); delete random; random = new RanMars(lmp,seed + comm->me); // reset cutoffs that have been explicitly set if (allocated) { int i,j; for (i = 1; i <= atom->ntypes; i++) for (j = i+1; j <= atom->ntypes; j++) if (setflag[i][j]) cut[i][j] = cut_global; } } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void PairMDPD::coeff(int narg, char **arg) { if (narg < 6 || narg > 7) error->all(FLERR,"Incorrect args for pair coefficients"); if (!allocated) allocate(); int ilo,ihi,jlo,jhi; force->bounds(arg[0],atom->ntypes,ilo,ihi); force->bounds(arg[1],atom->ntypes,jlo,jhi); double gamma_one = force->numeric(FLERR,arg[2]); double A_one = force->numeric(FLERR,arg[3]); double B_one = force->numeric(FLERR,arg[4]); double rd_one = force->numeric(FLERR,arg[5]); double cut_one = cut_global; if (narg == 7) cut_one = force->numeric(FLERR,arg[6]); int count = 0; for (int i = ilo; i <= ihi; i++) { for (int j = MAX(jlo,i); j <= jhi; j++) { gamma[i][j] = gamma_one; A[i][j] = A_one; B[i][j] = B_one; rd[i][j] = rd_one; cut[i][j] = cut_one; setflag[i][j] = 1; count++; } } if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients"); } /* ---------------------------------------------------------------------- init specific to this pair style ------------------------------------------------------------------------- */ void PairMDPD::init_style() { if (comm->ghost_velocity == 0) error->all(FLERR,"Pair mdpd requires ghost atoms store velocity"); // if newton off, forces between atoms ij will be double computed // using different random numbers if (force->newton_pair == 0 && comm->me == 0) error->warning(FLERR, "Pair mdpd needs newton pair on for momentum conservation"); neighbor->request(this,instance_me); } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairMDPD::init_one(int i, int j) { if (setflag[i][j] == 0) error->all(FLERR,"All pair coeffs are not set"); sigma[i][j] = sqrt(2.0*force->boltz*temperature*gamma[i][j]); cut[j][i] = cut[i][j]; gamma[j][i] = gamma[i][j]; sigma[j][i] = sigma[i][j]; A[j][i] = A[i][j]; B[j][i] = B[i][j]; rd[j][i] = rd[i][j]; return cut[i][j]; } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairMDPD::write_restart(FILE *fp) { write_restart_settings(fp); int i,j; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { fwrite(&setflag[i][j],sizeof(int),1,fp); if (setflag[i][j]) { fwrite(&gamma[i][j],sizeof(double),1,fp); fwrite( &A[i][j],sizeof(double),1,fp); fwrite( &B[i][j],sizeof(double),1,fp); fwrite( &rd[i][j],sizeof(double),1,fp); fwrite( &cut[i][j],sizeof(double),1,fp); } } } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairMDPD::read_restart(FILE *fp) { read_restart_settings(fp); allocate(); int i,j; int me = comm->me; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { if (me == 0) fread(&setflag[i][j],sizeof(int),1,fp); MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world); if (setflag[i][j]) { if (me == 0) { fread(&gamma[i][j],sizeof(double),1,fp); fread( &A[i][j],sizeof(double),1,fp); fread( &B[i][j],sizeof(double),1,fp); fread( &rd[i][j],sizeof(double),1,fp); fread( &cut[i][j],sizeof(double),1,fp); } MPI_Bcast(&gamma[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast( &A[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast( &B[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast( &rd[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast( &cut[i][j],1,MPI_DOUBLE,0,world); } } } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairMDPD::write_restart_settings(FILE *fp) { fwrite(&temperature,sizeof(double),1,fp); fwrite(&cut_global ,sizeof(double),1,fp); fwrite(&seed ,sizeof(int) ,1,fp); fwrite(&mix_flag ,sizeof(int) ,1,fp); } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairMDPD::read_restart_settings(FILE *fp) { if (comm->me == 0) { fread(&temperature,sizeof(double),1,fp); fread(&cut_global ,sizeof(double),1,fp); fread(&seed ,sizeof(int) ,1,fp); fread(&mix_flag ,sizeof(int) ,1,fp); } MPI_Bcast(&temperature,1,MPI_DOUBLE,0,world); MPI_Bcast(&cut_global ,1,MPI_DOUBLE,0,world); MPI_Bcast(&seed ,1,MPI_INT ,0,world); MPI_Bcast(&mix_flag ,1,MPI_INT ,0,world); // initialize Marsaglia RNG with processor-unique seed // same seed that pair_style command initially specified if (random) delete random; random = new RanMars(lmp,seed + comm->me); } /* ---------------------------------------------------------------------- proc 0 writes to data file ------------------------------------------------------------------------- */ void PairMDPD::write_data(FILE *fp) { for (int i = 1; i <= atom->ntypes; i++) fprintf(fp,"%d %g %g %g %g\n", i, gamma[i][i], A[i][i], B[i][i], rd[i][i]); } /* ---------------------------------------------------------------------- proc 0 writes all pairs to data file ------------------------------------------------------------------------- */ void PairMDPD::write_data_all(FILE *fp) { for (int i = 1; i <= atom->ntypes; i++) for (int j = i; j <= atom->ntypes; j++) fprintf(fp,"%d %d %g %g %g %g %g\n", i, j, gamma[i][j], A[i][j], B[i][j], rd[i][j], cut[i][j]); } /* ---------------------------------------------------------------------- */ double PairMDPD::single(int i, int j, int itype, int jtype, double rsq, double factor_coul, double factor_mdpd, double &fforce) { double r,rinv,wd,phi; r = sqrt(rsq); if (r < EPSILON) { fforce = 0.0; return 0.0; } rinv = 1.0/r; wd = 1.0 - r/cut[itype][jtype]; //fforce = a0[itype][jtype]*wd * factor_mdpd*rinv; fforce = 0.0; //phi = 0.5*a0[itype][jtype]*cut[itype][jtype] * wd*wd; phi = 0.0; return factor_mdpd*phi; } /* ---------------------------------------------------------------------- */ int PairMDPD::pack_forward_comm(int n, int *list, double *buf, int pbc_flag, int *pbc) { int i,j,m; m = 0; for (i = 0; i < n; i++) { j = list[i]; buf[m++] = rho[j]; } return m; } /* ---------------------------------------------------------------------- */ void PairMDPD::unpack_forward_comm(int n, int first, double *buf) { int i,m,last; m = 0; last = first + n; for (i = first; i < last; i++) rho[i] = buf[m++]; } /* ---------------------------------------------------------------------- memory usage of local atom-based arrays ------------------------------------------------------------------------- */ double PairMDPD::memory_usage() { double bytes = Pair::memory_usage(); bytes += nmax * sizeof(double); return bytes; }