
This article was downloaded by: [The University of Manchester Library]
On: 12 August 2014, At: 05:07
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Philosophical Magazine
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tphm20

Implementation of a new Fe–He
three-body interatomic potential for
molecular dynamics simulations
R.E. Stoller a , S.I. Golubov a b , P.J. Kamenski c , T. Seletskaia a &
Yu.N. Osetsky a
a Materials Science and Technology Division, Oak Ridge National
Laboratory, Oak Ridge , TN 37831-6138, USA
b Department of Materials Science and Engineering , University of
Tennessee, Knoxville , TN, USA
c Department of Materials Science and Engineering , University of
Wisconsin, Madison , WI, USA
Published online: 30 Mar 2010.

To cite this article: R.E. Stoller , S.I. Golubov , P.J. Kamenski , T. Seletskaia & Yu.N. Osetsky
(2010) Implementation of a new Fe–He three-body interatomic potential for molecular dynamics
simulations, Philosophical Magazine, 90:7-8, 923-934, DOI: 10.1080/14786430903298768

To link to this article:  http://dx.doi.org/10.1080/14786430903298768

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

http://www.tandfonline.com/loi/tphm20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/14786430903298768
http://dx.doi.org/10.1080/14786430903298768


Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 o

f 
M

an
ch

es
te

r 
L

ib
ra

ry
] 

at
 0

5:
07

 1
2 

A
ug

us
t 2

01
4 

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Philosophical Magazine
Vol. 90, Nos. 7–8, 7–14 March 2010, 923–934

Implementation of a new Fe–He three-body interatomic

potential for molecular dynamics simulations

R.E. Stollera*, S.I. Golubovab, P.J. Kamenskicy, T. Seletskaiaa and
Yu.N. Osetskya

aMaterials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge,
TN 37831-6138, USA; bDepartment of Materials Science and Engineering, University of
Tennessee, Knoxville, TN, USA; cDepartment of Materials Science and Engineering,

University of Wisconsin, Madison, WI, USA

(Received 9 July 2009; final version received 28 August 2009)

A recently developed interatomic potential for He–Fe interactions includes
a three-body term to stabilize the interstitial He defect in the tetrahedral
position in the Fe bcc matrix and provides simultaneous agreement with the
forces and energies of different atomic configurations as computed by first
principles. This term makes a significant contribution to the static and
dynamic properties of He in Fe. The implementation of this potential
for atomistic simulations using molecular dynamics (MD) presented certain
challenges which are discussed here to facilitate its further use in materials
research, particularly to investigate the behavior of iron-based alloys that
may be employed in fusion energy systems. Detailed results of an MD study
comparing the new potential and alternate He–Fe pair potentials with
different iron matrix potentials have been presented elsewhere to illustrate
the impact of the He–Fe potential on He diffusion, helium clustering and
the dynamics of He-vacancy clusters.

Keywords: bubbles; helium effects; irradiated materials; microstructure;
multiscale modeling; iron; helium

1. Introduction

Helium produced by nuclear transmutation has a substantial impact on radiation-
induced microstructural evolution [1–4] and is, therefore, a concern for DT fusion
reactor environments. Since no current irradiation facility can produce prototypical
levels of helium and atomic displacements, computational modeling and simulation
plays a primary role in understanding the impact of helium. Although computational
tools have advanced appreciably in recent years, most relevant atomistic work on the
effects of helium in iron have employed a relatively old pair potential to describe the
He–Fe interactions [5]. The underlying assumption of the adequacy of a pair
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potential to describe these interactions was challenged by recent ab initio calculations

[6,7], leading to the development of a three-body Fe–He interatomic potential [8,9].

This potential was fitted to an extensive database of properties calculated by first

principles, including the forces on atoms and the energies of different configurations

of He in the bcc Fe matrix and He-vacancy clusters. To simultaneously fit both the

forces and energies and obtain the tetrahedral position in the bcc lattice as the stable

site for the He interstitial defect required a three-body angular dependent term in the

Fe–He interaction potential [9]. This term contributes significantly to all the

properties of He atoms in the Fe matrix such as the formation energy and defect

configurations at zero temperature as well as diffusion and interactions between He

atoms and other defects at non-zero temperatures. The potential is currently being

used in an extensive investigation of He transport and He-bubble properties which

includes a direct comparison with the available pair potentials [5,10]. Significant

differences have been found between the predictions obtained with the various

potentials [11]. A preliminary description of the three-body interactions was

presented in [9]. However, implementation of the three-body interactions in a fast

and efficient molecular dynamics (MD) scheme is not obvious. The purpose of this

report is to facilitate usage of the new He–Fe interatomic potential by providing

complete details on the three-body He–Fe interactions and their contribution to He

behavior in the Fe matrix and a description of the implementation of the three-body

interactions in an MD simulation code.

2. Description of Fe–He three-body potential

2.1. Total potential energy

The total potential energy of a Fe crystal doped with He is given by

Utotal ¼
XIFe
i¼1

UFeð�iÞ þ
XIFe�1
i¼1

XIFe
j¼iþ1

UFeFeðrijÞ þ
XIHe�1

i¼1

XIHe

j¼iþ1

UHeHeðrijÞ

þ
XIHe

i¼1

XIFe
j¼1

UHeFeðrijÞ þ
XIHe

i¼1

XIFe�1
j¼1

XIFe
k¼jþ1

UHeFeFeðrij, rik, �jikÞ:

ð1Þ

The first and second summation terms in Equation (1) correspond to a pure iron,

embedded atom potential. Three different iron matrix potentials have been studied,

including the Finnis and Sinclair potential [12], the 1997 Ackland et al. potential [13],

and the 2004 Ackland et al. potential [14]. The third term on the right-hand side

of Equation (1) describes helium–helium interactions through the pair potential

developed by Aziz et al. [15]. The last two terms on the right-hand side of

Equation (1) correspond to two-body helium–iron interactions and three-body iron–

helium–iron interactions. This report shall clarify the implementation and impact of

these last two terms in Equation (1).
Note that the variable and function names in Equation (1) reflect conventional

usage to simplify the following discussion. The summation index description on

the right-hand side of the equation is different from that written in [9] to correct

924 R.E. Stoller et al.
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errors which would otherwise lead to double-counting of certain pair and triplet

contributions.

2.2. Two-body He–Fe interaction

The helium–iron two-body potential energy is given by

UHeFe ¼

expðb1 þ b2rij þ b3r
2
ij þ b4r

3
ij þ b5r

4
ijÞ, rij 5 1:6,

a1 þ a2rij þ a3r
2
ij þ a4r

3
ij þ a5r

4
ij þ a6r

5
ij, 1:6 � rij 5 2:2,

p1 exp �p4
rij
p3
� 1

� �� �
, 2:2 � rij 5 4:1,

p1 exp �p4
rij
p3
� 1

� �� �
1� �ð Þ

3
ð1þ 3�þ 6�2Þ, 4:1 � rij 5 4:4,

8>>>>>>><
>>>>>>>:

ð2Þ

where rij is the distance between He, (i ), and Fe atom, ( j ), given by

rij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xiÞ

2
þ ð yj � yiÞ

2
þ ðzj � ziÞ

2
q

: ð3Þ

The variable � in Equation (2) is related to rij as follows:

� ¼
rij � rb
rc � rb

, ð4Þ

where the parameters rb and rc are cutoff parameters given in Table 1. The

parameters a, b, and p in Equation (2) are also presented in Table 1. The distances
and energies in Equation (2) are given in Angstroms and eV, respectively. To be

clear, in this summary, lowercase x variables correspond to the x positions of atoms.

Note that the parameter p2 in Equation (2) in [9] was omitted here since it was fit to

be zero.
The forces on He and Fe atoms arising from the two-body potential (2) can be

calculated using

~F ¼ �rU: ð5Þ

Taking into account the Newton’s third law,

~Fi ¼ � ~Fj: ð6Þ

Based on Equation (6), it is sufficient to calculate the force acting on only one

of the Fe (or the He) atoms. Taking into account Equation (5), the x-component

Table 1. Parameters for pair potential given by Equation (2).

b1 ¼ �2:142600207811 a1 ¼ �285:7450302953 p1 ¼ 0:167753
b2 ¼ 32:965470333178 a2 ¼ 794:5913355517 p2 ¼ 0:00
b3 ¼ �52:893449935488 a3 ¼ �856:9376372455 p3 ¼ 2:432258
b4 ¼ 30:970079966695 a4 ¼ 452:5323035795 p4 ¼ 3:727249
b5 ¼ �6:398785336260 a5 ¼ �117:6519447529 rb ¼ 4:1

a6 ¼ 12:0878858024 rc ¼ 4:4

Philosophical Magazine 925
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of the force on the j-th atom is given by

ðFj Þx ¼

�UHeFeðb2 þ 2b3rij þ 3b4r
2
ijþ 4b5r

3
ijÞ

xj � xi
rij

� �
, rij51:6,

�ða2 þ 2a3rij þ 3a4r
2
ij þ 4a5r

3
ij þ 5a6r

4
ijÞ

xj� xi
rij

� �
, 1:6� rij52:2,

p1 exp �p4
rij
p3
� 1

� �� �
xj � xi
� �

rij

p4
p3

� �
, 2:2� rij54:1,

p1 exp �p4
rij
p3
� 1

� �� �
xj� xi
� �

rij

30

rc � rb
�2 1� �ð Þ

2
þ
p4
p3
ð1� �Þ3ð1þ 3�þ 6�2Þ
	 
� �

:

4:1� rij54:4:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð7Þ

Forces in the y- and z-directions can be calculated by replacing the xj and xi terms
with the corresponding yj and yi or zj and zi values, respectively. The force on the i
atom, Fi, is given by Equation (6).

2.3. Three-body He–Fe–Fe interaction

The potential energy function for the helium–iron–iron three-body interaction is
given by

UHeFeFeðrij, rik, �jikÞ ¼ f ðrijÞ f ðrikÞ cos
2ð�jik � �Þ, ð8Þ

where rij and rik are the distances between the helium atom located at a position (i )
and two Fe atoms located at positions ( j ) and (k), respectively, and �jik is the angle
between the corresponding vectors ~rij and ~rik. The function f (r) is given by

f ðrÞ ¼
�, r � rb3,

� 1��ð Þ
3
ð1þ 3�þ 6�2Þ, rb3 5 r � rc3,

�
ð9Þ

� ¼
r� rb3
rc3 � rb3

, ð10Þ

where the parameters �, rb3 and rc3 are given in Table 2 together with the
parameter �. Note that the angle �jik varies from zero to �.

Taking into account that the distances rij and rik are determined by the
coordinates of atoms as follows:

rij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xiÞ

2
þ ð yj � yiÞ

2
þ ðzj � ziÞ

2
q

,

rik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � xiÞ

2
þ ð yk � yiÞ

2
þ ðzk � ziÞ

2

q
,

ð11Þ

Table 2. Parameters for three-body poten-
tial given by Equations (8) and (9).

� 0.7
rb3 1.75
rc3 2.2
� 0.44

926 R.E. Stoller et al.
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the angle �jik is given by

�jik ¼ arccos
ðxj � xiÞðxk � xiÞ þ ð yj � yiÞð yk � yiÞ þ ðzj � ziÞðzk � ziÞ

rijrik

� �
: ð12Þ

It can be also shown that Newton’s third law in the case takes the following form:

~Fi ¼ �ð ~Fj þ ~FkÞ: ð13Þ

Thus, it is enough to calculate forces on two atoms only, e.g. on two Fe atoms.
Using Equation (5), the x-component of the force acting on the j-Fe atom can be
presented as follows:

ðFj Þx ¼ �
df ðrijÞ

dxj

� �
f ðrikÞ cos

2ð�jik � �Þ

� f ðrijÞ f ðrikÞ
sinð2ð�jik � �ÞÞ

sinð�jikÞ

d cosð�jikÞ

dxj
,

ð14Þ

where

df ðrijÞ

dxj
¼

0, rij � rb3,

�30��2ð1��Þ2
ðxj � xiÞ

rijðrc3 � rb3Þ
, rb3 5 rij � rc3,

0, rij � rc3,

8>>><
>>>:
d cosð�jikÞ

dxj
¼
ðxk � xiÞ

rijrik
� cosð�jikÞ

ðxj � xiÞ

r2ij
:

ð15Þ

The y and z components of the force can be obtained from Equations (14) and
(15) by replacing x-coordinates with y- and z-coordinates, respectively. The force
acting on the k-Fe atom can be obtained from the same equations by replacing
j-coordinates with k-coordinates and vice versa. Finally, the force acting on the He
atom is given by Equation (13). Note that the sin(�jik) factor in the denominator of
Equation (14) will go to zero if �jik¼�. As a practical matter of the implementation,
we have set a cutoff value of �jik that is close to �, 3.141583, to prevent numerical
instability and have verified that this has no significant impact on the results.

Thus, the set of Equations (1)–(15) can be used in conjunction with any of the
interatomic potentials for the iron matrix published in [12–14] and the He–He
interaction described in [15] to obtain a full and comprehensive description of
the potential energy and forces acting on He and Fe atoms in an Fe crystal doped
with He.

2.4. Energy and force acting on the He atom in a given triplet configuration

The complex nature of the forces and the energy landscape for a given Fe–He–Fe
triplet are illustrated in Figures 1–3, which are presented to provide a visualization of
the three-body potential. The results are from calculations for a single Fe–He–Fe
triplet. The most significant observation that can be drawn from these figures is the
strong angular dependence of the three-body term. The angular dependence and
value of � were chosen to guarantee the tetrahedral site provided the lowest

Philosophical Magazine 927
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interstitial formation energy. This leads to a relatively weak dependence on the
distance between helium and either iron atom in the triplet when the angle is near
that associated with the tetrahedral location, �jik� 1.92 rad. For example, the energy
minimum of the Fe–He–Fe triplet at this angle shown in Figure 1 only weakly
depends on the He–Fe separation but varies strongly with the angle. The absolute
force on the helium atom is similarly minimized as shown in Figure 2. The decision

Figure 2. Absolute value of the force acting on the He atom as a function of � and rik, where rij
is equal to 1.8 Å.

Figure 1. Energy of Fe–He–Fe triplet as a function of � and rik, where rij is equal to 1.8 Å.

928 R.E. Stoller et al.
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to use the triplet angle to stabilize the tetrahedral interstitial is in contrast to the
recent pair potential by Juslin and Nordlund [10] in which a steep radial (He–Fe
spacing) dependence was used to accomplish this. A comparison of the two
approaches has yielded significant differences in the static properties of He-vacancy
clusters, migration of interstitial He in the Fe matrix, and the kinetics of He- and
He-vacancy cluster evolution as described in [11].

Additional information on the forces on a helium atom near the tetrahedral
position is given in Figure 3, which shows the forces in two principle directions
for a helium atom located in a {100} plane. In both cases, the force is near zero
and relatively insensitive to He–Fe distance near the specified angle.

Figure 3. Force acting on the He atom in the (a) x-direction and (b) y-direction in the x–y-
plane as a function of � and rik, where rij is equal to 1.8 Å.
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3. Influence of three-body term on He atom migration

The influence of the three-body term on the He migration path is shown in
Figures 4–8, for which the calculations were done for one He atom in an unrelaxed
Fe lattice. Figure 4 shows the energy change for a He atom passing from one

Figure 5. h110i He migration in bcc Fe. The five nearest neighbors during this migration are
darkened. Provided by Dr. Y. Matsukawa, ORNL (now University of Illinois).

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of 110 tetrahedral migration distance

E
n

er
g

y 
(e

V
)

2 body
2 + 3 body

Figure 4. (Color online). Migration energy barrier for a He atom passing from one tetrahedral
site to another along a h110i direction. Note that both energy curves have been shifted such
that the He atom in the tetrahedral sites has an energy equal to zero. This data is obtained for
an unrelaxed lattice.
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Figure 7. h100i Octahedral interstitial He migration in bcc Fe. The six nearest neighbors
for the final octahedral configuration are darkened. Provided by Dr. Y. Matsukawa, ORNL
(now University of Illinois).

5.6

5.8

6

6.2

6.4

6.6

0 0.2 0.4 0.6 0.8 1

Fraction of octahedral to octahedral <100> migration distance

E
n

er
g

y 
(e

V
)

2 body repulsive E

2 body + 3 body

VASP energies

Figure 6. Energy of a He atom moving along a h100i direction from one octahedral site
to another. Note that the He atom goes through a tetrahedral site mid-way. This data is for
an unrelaxed lattice.
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tetrahedral site to another along a h110i direction (illustrated in Figure 5), which
is the energetically favored migration path [7,9]. It is clear that the addition of the
three-body term changes both the magnitude and the shape of the energy barrier.
The local energy minimum produced in the intermediate region in the case of three-
body potential relates to the types of Fe–He–Fe triplets that arise in this intermediate
configuration. The five nearest neighbors in this region are shown in Figure 5.
The energy barrier for the unrelaxed lattice shown in Figure 4 (�0.25 eV) is higher
than the ab initio result of 0.06 eV. Calculations for a relaxed lattice reported in [9]
yielded values of 0.03, 0.04, and 0.03 eV when the three-body He-Fe potential was
combined with the Finnis–Sinclair [12], 1997 Ackland, et al. [13] and 2004 Ackland,
et al. [14] iron potentials, respectively. Although these are large relative differences,
all the values are quite low on an absolute energy scale, leading to essentially
athermal migration.

5.7

5.9

6.1
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6.7

6.9

–0.2 –0.15 –0.1 –0.05 0 0.05 0.1 0.15 0.2
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b

o
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y 
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(e

V
)
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6.5

6.7

6.9

–0.2 –0.15 –0.1 –0.05 0 0.05 0.1 0.15 0.2

Distance from tetrahedral site in <010> direction (lattice parameter)

2 
+ 

3 
b
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d

y 
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er
g

y 
(e

V
)

Figure 8. Energy of a He atom moving along the other two principle directions relative
to Figures 6 and 7, showing the tetrahedral site as a local energy minimum in each principle
direction.
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The Fe–He–Fe triplets formed in the intermediate region either (a) form an
angle close to the preferential angle, and/or (b) have at least one long distance vector.
Both (a) and (b) lead to smaller energy contributions for the given triplet. So, instead
of a smooth energy barrier for migration given by the purely repulsive two-body
potential shown in the figure, the three-body contribution produces a meta-stable
triangular site found half way through the migration, as shown Figure 5.

The migration path described energetically in Figure 6 can be seen in Figure 7.
The two-body repulsive energy shown in Figure 7 produces an octahedral to
tetrahedral site energy difference of 124meV. When the three-body term is added,
the energy difference is 711meV, which is much closer to the VASP energy difference
of 670meV. Also, the two-body repulsive potential makes the tetrahedral site a local
energy maximum (by a small amount), whereas with the three-body term added,
the tetrahedral site is a local energy minimum. This migration path from one
octahedral site directly to another passes through a tetrahedral site, which is mid-way
through the motion. The energy minimum along this path is clearly the tetrahedral
site. The energy landscape for He migration along the h010i and h001i orthogonal
(relative to Figures 6 and 7) principle directions is shown in Figure 8, illustrating
that the tetrahedral site is a local energy minimum in each principle direction.

4. Summary

The procedure, equations and coefficients necessary to implement a new Fe–He
three-body potential [9] have been described. Moreover, the description provides
a general way to understand three-body interactions in atomistic simulations.
The energy landscape provided by this new potential is substantially more complex
than that of a simple pair potential, and provides results in good agreement with
ab initio calculations. The importance of three-body interactions for He migration
and stabilization of the tetrahedral configuration is demonstrated, and the use of the
new potential is recommended. As an example of its impact, [11] describes a detailed
investigation of the behavior of He and He-vacancy clusters in which results
obtained with this three-body potential are compared with those obtained using pair
potentials.
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