/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Mathias Puetz (SNL) and friends ------------------------------------------------------------------------- */ #include "math.h" #include "stdlib.h" #include "dihedral_multi_harmonic_seven.h" #include "atom.h" #include "neighbor.h" #include "domain.h" #include "comm.h" #include "force.h" #include "update.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; #define MIN(A,B) ((A) < (B)) ? (A) : (B) #define MAX(A,B) ((A) > (B)) ? (A) : (B) #define TOLERANCE 0.05 #define SMALL 0.001 /* ---------------------------------------------------------------------- */ DihedralMultiHarmonicSeven::DihedralMultiHarmonicSeven(LAMMPS *lmp) : Dihedral(lmp) {} /* ---------------------------------------------------------------------- */ DihedralMultiHarmonicSeven::~DihedralMultiHarmonicSeven() { if (allocated) { memory->sfree(setflag); memory->sfree(a1); memory->sfree(a2); memory->sfree(a3); memory->sfree(a4); memory->sfree(a5); memory->sfree(a6); memory->sfree(a7); memory->sfree(a8); } } /* ---------------------------------------------------------------------- */ void DihedralMultiHarmonicSeven::compute(int eflag, int vflag) { int n,i1,i2,i3,i4,type,factor; double rfactor; double vb1x,vb1y,vb1z,vb2x,vb2y; double vb2z,vb2xm,vb2ym,vb2zm,vb3x,vb3y,vb3z,sb1; double sb2,sb3,rb1,rb3,c0,b1mag2,b1mag,b2mag2; double b2mag,b3mag2,b3mag,ctmp,r12c1,c1mag,r12c2; double c2mag,sc1,sc2,s1,s12,c,p,pd,a,a11,a22; double a33,a12,a13,a23,sx1,sx2,sx12,sy1,sy2,sy12; double sz1,sz2,sz12,s2,sin2; energy = 0.0; if (vflag) for (n = 0; n < 6; n++) virial[n] = 0.0; double **x = atom->x; double **f = atom->f; int **dihedrallist = neighbor->dihedrallist; int ndihedrallist = neighbor->ndihedrallist; int nlocal = atom->nlocal; int newton_bond = force->newton_bond; for (n = 0; n < ndihedrallist; n++) { i1 = dihedrallist[n][0]; i2 = dihedrallist[n][1]; i3 = dihedrallist[n][2]; i4 = dihedrallist[n][3]; type = dihedrallist[n][4]; if (newton_bond) factor = 4; else { factor = 0; if (i1 < nlocal) factor++; if (i2 < nlocal) factor++; if (i3 < nlocal) factor++; if (i4 < nlocal) factor++; } rfactor = 0.25 * factor; // 1st bond vb1x = x[i1][0] - x[i2][0]; vb1y = x[i1][1] - x[i2][1]; vb1z = x[i1][2] - x[i2][2]; domain->minimum_image(vb1x,vb1y,vb1z); // 2nd bond vb2x = x[i3][0] - x[i2][0]; vb2y = x[i3][1] - x[i2][1]; vb2z = x[i3][2] - x[i2][2]; domain->minimum_image(vb2x,vb2y,vb2z); vb2xm = -vb2x; vb2ym = -vb2y; vb2zm = -vb2z; domain->minimum_image(vb2xm,vb2ym,vb2zm); // 3rd bond vb3x = x[i4][0] - x[i3][0]; vb3y = x[i4][1] - x[i3][1]; vb3z = x[i4][2] - x[i3][2]; domain->minimum_image(vb3x,vb3y,vb3z); // c0 calculation sb1 = 1.0 / (vb1x*vb1x + vb1y*vb1y + vb1z*vb1z); sb2 = 1.0 / (vb2x*vb2x + vb2y*vb2y + vb2z*vb2z); sb3 = 1.0 / (vb3x*vb3x + vb3y*vb3y + vb3z*vb3z); rb1 = sqrt(sb1); rb3 = sqrt(sb3); c0 = (vb1x*vb3x + vb1y*vb3y + vb1z*vb3z) * rb1*rb3; // 1st and 2nd angle b1mag2 = vb1x*vb1x + vb1y*vb1y + vb1z*vb1z; b1mag = sqrt(b1mag2); b2mag2 = vb2x*vb2x + vb2y*vb2y + vb2z*vb2z; b2mag = sqrt(b2mag2); b3mag2 = vb3x*vb3x + vb3y*vb3y + vb3z*vb3z; b3mag = sqrt(b3mag2); ctmp = vb1x*vb2x + vb1y*vb2y + vb1z*vb2z; r12c1 = 1.0 / (b1mag*b2mag); c1mag = ctmp * r12c1; ctmp = vb2xm*vb3x + vb2ym*vb3y + vb2zm*vb3z; r12c2 = 1.0 / (b2mag*b3mag); c2mag = ctmp * r12c2; // cos and sin of 2 angles and final c sin2 = MAX(1.0 - c1mag*c1mag,0.0); sc1 = sqrt(sin2); if (sc1 < SMALL) sc1 = SMALL; sc1 = 1.0/sc1; sin2 = MAX(1.0 - c2mag*c2mag,0.0); sc2 = sqrt(sin2); if (sc2 < SMALL) sc2 = SMALL; sc2 = 1.0/sc2; s1 = sc1 * sc1; s2 = sc2 * sc2; s12 = sc1 * sc2; c = (c0 + c1mag*c2mag) * s12; // error check if (c > 1.0 + TOLERANCE || c < (-1.0 - TOLERANCE)) { if (screen) { fprintf(screen,"Dihedral problem: %d %d %d %d %d %d\n", comm->me,update->ntimestep, atom->tag[i1],atom->tag[i2],atom->tag[i3],atom->tag[i4]); fprintf(screen," 1st atom: %d %g %g %g\n", comm->me,x[i1][0],x[i1][1],x[i1][2]); fprintf(screen," 2nd atom: %d %g %g %g\n", comm->me,x[i2][0],x[i2][1],x[i2][2]); fprintf(screen," 3rd atom: %d %g %g %g\n", comm->me,x[i3][0],x[i3][1],x[i3][2]); fprintf(screen," 4th atom: %d %g %g %g\n", comm->me,x[i4][0],x[i4][1],x[i4][2]); } } if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; // force & energy // p = sum (i=1,8) a_i * c**(i-1) // pd = dp/dc p = a1[type] + c*(a2[type] + c*(a3[type] + c*(a4[type] + c*(a5[type]+c*(a6[type]+c*(a7[type]+c*(a8[type]))))))); pd = a2[type] + c*(2.0*a3[type] + c*(3.0*a4[type] + c*(4.0*a5[type]+c*(5.0*a6[type]+c*(6.0*a7[type]+c*(7.0*a8[type])))))); if (eflag) energy += rfactor * p; a = pd; c = c * a; s12 = s12 * a; a11 = (-c*sb1*s1); a22 = sb2*(2.0*c0*s12 - c*(s1+s2)); a33 = (-c*sb3*s2); a12 = r12c1*(c1mag*c*s1 + c2mag*s12); a13 = rb1*rb3*s12; a23 = r12c2*(-c2mag*c*s2 - c1mag*s12); sx1 = a11*vb1x + a12*vb2x + a13*vb3x; sx2 = a12*vb1x + a22*vb2x + a23*vb3x; sx12 = a13*vb1x + a23*vb2x + a33*vb3x; sy1 = a11*vb1y + a12*vb2y + a13*vb3y; sy2 = a12*vb1y + a22*vb2y + a23*vb3y; sy12 = a13*vb1y + a23*vb2y + a33*vb3y; sz1 = a11*vb1z + a12*vb2z + a13*vb3z; sz2 = a12*vb1z + a22*vb2z + a23*vb3z; sz12 = a13*vb1z + a23*vb2z + a33*vb3z; // apply force to each of 4 atoms if (newton_bond || i1 < nlocal) { f[i1][0] -= sx1; f[i1][1] -= sy1; f[i1][2] -= sz1; } if (newton_bond || i2 < nlocal) { f[i2][0] += sx2 + sx1; f[i2][1] += sy2 + sy1; f[i2][2] += sz2 + sz1; } if (newton_bond || i3 < nlocal) { f[i3][0] += sx12 - sx2; f[i3][1] += sy12 - sy2; f[i3][2] += sz12 - sz2; } if (newton_bond || i4 < nlocal) { f[i4][0] -= sx12; f[i4][1] -= sy12; f[i4][2] -= sz12; } // virial contribution if (vflag) { virial[0] -= rfactor * (vb1x*sx1 + vb2x*sx2 + vb3x*sx12); virial[1] -= rfactor * (vb1y*sy1 + vb2y*sy2 + vb3y*sy12); virial[2] -= rfactor * (vb1z*sz1 + vb2z*sz2 + vb3z*sz12); virial[3] -= rfactor * (vb1x*sy1 + vb2x*sy2 + vb3x*sy12); virial[4] -= rfactor * (vb1x*sz1 + vb2x*sz2 + vb3x*sz12); virial[5] -= rfactor * (vb1y*sz1 + vb2y*sz2 + vb3y*sz12); } } } /* ---------------------------------------------------------------------- */ void DihedralMultiHarmonicSeven::allocate() { allocated = 1; int n = atom->ndihedraltypes; a1 = (double *) memory->smalloc((n+1)*sizeof(double),"dihedral:a1"); a2 = (double *) memory->smalloc((n+1)*sizeof(double),"dihedral:a2"); a3 = (double *) memory->smalloc((n+1)*sizeof(double),"dihedral:a3"); a4 = (double *) memory->smalloc((n+1)*sizeof(double),"dihedral:a4"); a5 = (double *) memory->smalloc((n+1)*sizeof(double),"dihedral:a5"); a6 = (double *) memory->smalloc((n+1)*sizeof(double),"dihedral:a6"); a7 = (double *) memory->smalloc((n+1)*sizeof(double),"dihedral:a7"); a8 = (double *) memory->smalloc((n+1)*sizeof(double),"dihedral:a8"); setflag = (int *) memory->smalloc((n+1)*sizeof(int),"dihedral:setflag"); for (int i = 1; i <= n; i++) setflag[i] = 0; } /* ---------------------------------------------------------------------- set coeffs for one type ------------------------------------------------------------------------- */ void DihedralMultiHarmonicSeven::coeff(int which, int narg, char **arg) { if (which > 0) return; if (narg != 9) error->all("Incorrect args for dihedral coefficients"); if (!allocated) allocate(); int ilo,ihi; force->bounds(arg[0],atom->ndihedraltypes,ilo,ihi); double a1_one = atof(arg[1]); double a2_one = atof(arg[2]); double a3_one = atof(arg[3]); double a4_one = atof(arg[4]); double a5_one = atof(arg[5]); double a6_one = atof(arg[6]); double a7_one = atof(arg[7]); double a8_one = atof(arg[8]); int count = 0; for (int i = ilo; i <= ihi; i++) { a1[i] = a1_one; a2[i] = a2_one; a3[i] = a3_one; a4[i] = a4_one; a5[i] = a5_one; a6[i] = a6_one; a7[i] = a7_one; a8[i] = a8_one; setflag[i] = 1; count++; } if (count == 0) error->all("Incorrect args for dihedral coefficients"); } /* ---------------------------------------------------------------------- proc 0 writes out coeffs to restart file ------------------------------------------------------------------------- */ void DihedralMultiHarmonicSeven::write_restart(FILE *fp) { fwrite(&a1[1],sizeof(double),atom->ndihedraltypes,fp); fwrite(&a2[1],sizeof(double),atom->ndihedraltypes,fp); fwrite(&a3[1],sizeof(double),atom->ndihedraltypes,fp); fwrite(&a4[1],sizeof(double),atom->ndihedraltypes,fp); fwrite(&a5[1],sizeof(double),atom->ndihedraltypes,fp); fwrite(&a6[1],sizeof(double),atom->ndihedraltypes,fp); fwrite(&a7[1],sizeof(double),atom->ndihedraltypes,fp); fwrite(&a8[1],sizeof(double),atom->ndihedraltypes,fp); } /* ---------------------------------------------------------------------- proc 0 reads coeffs from restart file, bcasts them ------------------------------------------------------------------------- */ void DihedralMultiHarmonicSeven::read_restart(FILE *fp) { allocate(); if (comm->me == 0) { fread(&a1[1],sizeof(double),atom->ndihedraltypes,fp); fread(&a2[1],sizeof(double),atom->ndihedraltypes,fp); fread(&a3[1],sizeof(double),atom->ndihedraltypes,fp); fread(&a4[1],sizeof(double),atom->ndihedraltypes,fp); fread(&a5[1],sizeof(double),atom->ndihedraltypes,fp); fread(&a6[1],sizeof(double),atom->ndihedraltypes,fp); fread(&a7[1],sizeof(double),atom->ndihedraltypes,fp); fread(&a8[1],sizeof(double),atom->ndihedraltypes,fp); } MPI_Bcast(&a1[1],atom->ndihedraltypes,MPI_DOUBLE,0,world); MPI_Bcast(&a2[1],atom->ndihedraltypes,MPI_DOUBLE,0,world); MPI_Bcast(&a3[1],atom->ndihedraltypes,MPI_DOUBLE,0,world); MPI_Bcast(&a4[1],atom->ndihedraltypes,MPI_DOUBLE,0,world); MPI_Bcast(&a5[1],atom->ndihedraltypes,MPI_DOUBLE,0,world); MPI_Bcast(&a6[1],atom->ndihedraltypes,MPI_DOUBLE,0,world); MPI_Bcast(&a7[1],atom->ndihedraltypes,MPI_DOUBLE,0,world); MPI_Bcast(&a8[1],atom->ndihedraltypes,MPI_DOUBLE,0,world); for (int i = 1; i <= atom->ndihedraltypes; i++) setflag[i] = 1; }