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Constant-pressure and constant-surface tension simulations in dissipative
particle dynamics

Ask F. Jakobsen
MEMPHYS-Center for Biomembrane Physics, Physics Department, University of Southern Denmark,
Campusvej 55, DK-5230 Odense M, Denmark

sReceived 14 December 2004; accepted 12 January 2005; published online 25 March 2005d

We present a method for constant-pressure and constant-surface tension simulations in dissipative
particle dynamics using a Langevin piston approach. We demonstrate that the corresponding
equations of motion lead to the relevant ensembles and propose an appropriate scheme of
integration. After having identified a suitable set of parameters for the approach, we demonstrate the
feasibility of the approach by applying it to two different systems, a simple isotropic fluid and an
anisotropic fluid lipid-bilayer membrane in water. Results are presented for, respectively, isothermal
bulk compressibility, tracer diffusion coefficient, lipid head-group area, and isothermal area
compressibility. We find that our Langevin piston approach leads to improvements over other
approaches in terms of faster equilibration and shorter correlation times of various system
variables. ©2005 American Institute of Physics. fDOI: 10.1063/1.1867374g

I. INTRODUCTION

Molecular dynamicssMDd simulation in its simplest
form samples the microcanonical ensemble because the basis
of MD is simple Newtonian mechanics. Since theNPT en-
semble is usually the physical relevant ensemble, various
algorithms have been developed to perform MD simulations
under constant temperature and constant pressure.1–3 These
algorithms involve a specific coupling between the pressure
and an additional variable, thereby extending the phase space
of the system. These so-called extended system barostats,
however, have the problem that the volume fluctuations show
a “ringing” of the volume with some decay time that depends
on the fictitious barostat mass. In order to shorten the decay
time and to dampen out the unphysical oscillations of the
volume, the Langevin piston barostat has been developed,4

rendering the choice of the barostat mass less critical.
Whereas the extended system approach in itself is determin-
istic, the Langevin piston introduces stochastic dynamics
into the system. The stochastic dynamics improves the effec-
tive ergodicity of the simulations5 which is necessary in or-
der to extract ensemble averages from the MD simulations.
In addition, the Langevin dynamics has the potential of re-
ducing correlation times. Combining the Langevin piston
with standard Langevin dynamics for the particlessthus cou-
pling to a heat bathd has been shown to improve ergodicity
and shorten correlation times.6,7

Dissipative particle dynamicssDPDd simulation8,9 has in
recent years emerged as a novel numerical technique to study
soft matter and complex fluids at a large range of length and
time scales. DPD is a stochastic method useful to simulate
coarse-grained models of fairly complex systems involving a
large number of particles. In contrast to stochastic Monte
Carlo simulation, DPD has the advantage that it preserves
the hydrodynamic modes, and the equilibration is much

faster than in molecular dynamics. Examples of systems that
have successfully been studied by DPD include colloids,10

vesicles,11 and biological membranes.12,13

However, DPD is not without its problems. First of all,
the integration of the equations of motion of DPD is highly
nontrivial.14–16 Whereas inappropriate integration in MD,
e.g., augmented by using too large time steps, usually mani-
fests itself in some easily detectable and incorrect system
behavior, integration of the DPD equations of motion may
lead to unphysical and subtle artifacts that are not easily
detected. This is, in particular, the case when adding an ex-
tended system barostat or Langevin piston to the DPD inte-
gration routine. This is the problem we will address in the
present paper. In particular, we will establish DPD methods
for sampling theNPTensemble for an isotropic fluid and the
NPNgST ensemble for an anisotropic fluid, wherePN is the
normal pressure andgS is an interfacial tension.

The constant-normal pressure and constant-surface ten-
sion ensemble,NPNgST, is relevant for interfacial systems
such as fluid lipid-bilayer membranes in water. When mod-
eling lipid bilayers it is important to be able to apply a spe-
cific surface tension. Especially the tensionless membrane is
of interest since it is believed that a self-assembled mem-
brane has zero surface tension. A method for accomplishing
constant surface tension in DPD involves combining DPD
with a Monte Carlo algorithm for updating the size of the
simulation box every now and then in an abrupt and stochas-
tic way.17 By this method, the normal pressure is not an
independent variable since the volume of the box is fixed.
Moreover, the problem remains as to how often one should
perform a Monte Carlo step to update the simulation box
size. Other workers have found the tensionless state of model
lipid membranes by trial and error within the canonical
ensemble.13

In the following, a systematic method for sampling the
NPTand theNPNgST ensembles in DPD will be established.
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The equations of motion will be shown to produce the right
ensembles. An algorithm for integrating the equations will be
presented. The feasibility of the methods is tested on two
well-known systems. For testing theNPT ensemble simula-
tions we use a simple DPD fluid. For testing theNPNgST
ensemble simulations we consider a model lipid-bilayer sys-
tem which is an anisotropic fluid.

II. DISSIPATIVE PARTICLE DYNAMICS

In DPD the total force on particlei at positionr i and
with momentumpi is given by

ṗi = Fi
C + o

jÞi

Fi j
D + o

jÞi

Fi j
R, s1d

whereFi
C is a conservative force exerted on particlei from

particle j . The dissipative forceFi j
D and the random forceFi j

R

have the form

Fi j
D = − gvDsr ijdsei j ·vi jdei j , s2d

Fi j
R = svRsr ijdji jei j , s3d

wherer i j =r i −r j , r ij = ur i j u , ei j =r i j / r ij , andvi j =vi −v j, where
vi is the velocity of particlei, andvD and vR are arbitrary
weight functions.

The variableji j represent Gaussian white noise withji j

=j ji and the following stochastic properties:

kji jstdl = 0,

kji jstdji8 j8st8dl = sdii8d j j 8 + di j 8d ji8ddst − t8d. s4d

The parameterg controls the strength of the dissipation and
the parameters the strength of the noise. The thermostat
consisting of the random and dissipative forces in Eq.s1d
conserves momentum pairwise, so DPD is a momentum-
conserving thermostat.

It has been proved that the corresponding Fokker–Planck
equation of Eq.s1d has the canonical equilibrium distribution
as a solution given the following constraints:9

fvRsrdg2 = vDsrd, s5ad

s2 = 2kBTg. s5bd

The above is thus a fluctuation-dissipation theorem for the
DPD system.

In DPD simulationsvDsrd is often chosen to be

vDsrd = H1 − r/r0, r , r0

0, r ù r0
J , s6d

wherer0 is the cutoff distance.
A conservative soft-core repulsion is usually modeled

simply by

Fi j
S =Ai jvDsr ijdei j , s7d

wherevD is chosen as in Eq.s6d. The repulsion parameter
Ai j gives different particle/bead species their identity. To
create model polymers, beads are tied together by harmonic
springs, and to add rigidity to the structure, angle-bending
potentials are applied.

All beads have the same massm0 and cutoffr0 seffective
sized. The energy scale is set bykBT. We will use units where
all these quantities are unity. Fromm0, r0, andkBT, a time
scalet0=Îm0r0

2/kBT can be extracted, and in the following
all time scales will be in this DPD time unit.

The DPD particles are simulated in a box with periodic
boundary conditions. In the case of the isotropic fluid, the
appropriate choice of box shape is that of a cube whose
volume changes by keeping the shape fixed. Since the bilay-
ers we are interested in are also fluids, they cannot resist
shear. Therefore the appropriate simulation box has the shape
of an orthorhombic cell, i.e., all normals to the faces of the
simulation box point along the canonical coordinate axes.

III. CUBIC BOX

The equations of motions for ad-dimensional cubic
simulation box containingN particles andNf =dN−d<dN
degrees of freedom are the following:

ṙ i =
pi

mi
+

pe

W
r i , s8ad

ṗi = Fi
C − o

jÞi

gvDsr ijdsei j ·vi jdei j

+ o
jÞi

svRsr ijdji jei j − S1 +
d

Nf
Dpe

W
pi , s8bd

V̇ =
dVpe

W
, s8cd

ṗe = dVfPstd − P0g +
d

Nf
o

i

pi
2

mi
− gppe + spjp, s8dd

where ji j has the property as defined in Eq.s4d and jp is
Gaussian white noise with the propertieskjpl=0 and
kjpstdjpst8dl=dst− t8d. The piston “momentum” is denoted
pe ,V is the simulation box volume,W is the piston “mass,”
P0 is the target pressure, andd is the dimensionality of the
simulation system. It is called the extended system method
whengp=sp=0, since volume and volume momentum have
been coupled to the equations of motion. Whengp andsp is
larger than zero, the method is called the Langevin piston
method. Later we will find the exact relation betweengp and
sp. So far we will assume thatsp→0 whengp→0.

The instantaneous pressurePstd is defined as

Pstd =
1

dVFo
i

pi
2

mi
+ o

i

Fi
C · r iG , s9d

whereV is the volume of the simulation box. Notice that this
is not the instantaneous pressure calculated from the virial
equation, since the stochastic part is not included in Eq.s9d.

In the limit g→0 and gp→0, it is straightforward to
show that the dynamical system conserves the quantity
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H8 = Hsr N,pNd + P0V +
pe

2

2W
, s10d

whereH is the Hamiltonian of the particle subsystem. The
energy functionH8 will be referred to as the extended system
energy. Note thatH8 is not a Hamiltonian since Eqs.
s8ad–s8dd cannot be retrieved as derivatives ofH8. The com-
pressibilityk of the extended phase space as defined in Ref.
18 is given by

k = o
i

=ri
· ṙ i + o

i

=pi
· ṗi +

]

]pe

ṗe +
]

]VV̇ = 0. s11d

One can think of Eqs.s8ad–s8dd as a coordinate transforma-
tion of the extended phase space, and the JacobianJ of this
coordinate transformation is found to beJ=1 sRef. 2d since

dJ

dt
= kJ. s12d

Thus the phase space has a constant unit metricÎg=1 and
the dynamical system obeys the Liouville theorem,18,19

]r

]t
+ o

i

ṙ i · =ri
r + o

i

ṗi · =pi
r + ṗe

]r

]pe

+ V̇ ]r

]V = 0. s13d

One can justify that Eqs.s8ad–s8dd in the particle sub-
system actually sample the isothermal-isobaric ensemble in
the limit g→0 andgp→0. The phase-space probability den-
sity for the extended system is given by

rNPH8sr
N,pN,pe,Vd ~

dsH8 − H08d
VNPH8sr

N,pN,pe,Vd
. s14d

The probability density of the extended system when
coupled to a heat bath is given by

rNPTsr N,pN,pe,Vd ~
exps− H8/kBTd

VNPTsr N,pN,pe,Vd
. s15d

The integration over the barostat momentumpe gives a con-
stant and hence,

rNPTsr N,pN,Vd ~
1

VNPTsr N,pN,Vd

3expS−
Hsr N,pNd + PV

kBT
D , s16d

which precisely is the phase-space probability density for the
isobaric-isothermal ensemble.

Equationss8ad–s8dd can be put onto a mathematically
well-defined form for stochastic differential equations which
makes it straightforward to apply the standard procedures for
finding the associated Fokker–Planck equation.20 Equations
s8bd and s8dd have stochastic elements and require special
attention. In the stochastic terms the differentials are re-
placed by stochastic differentials,

dpi = FFi
C − o

jÞi

gvDsr ijdSei j ·H pi

mi
−

p j

mj
JDei jGdt

+ o
jÞi

svRsr ijdei jdWij − S1 +
d

Nf
Dpe

W
pidt,

s17d

dpe = FdVfPstd − P0g +
d

Nf
o

i

pi
2

mi
− gppeGdt + spdW,

wheredW anddWij =dWji are independent increments of the
Wiener process with the latter having the property

dWijdWi8 j8 = sdii8d j j 8 + di j 8d ji8ddt. s18d

Both dW and dWij are infinitesimals of order 1/2. The
Fokker–Planck equation that corresponds to the stochastic
differential equationss8ad–s8dd is

]r

]t
+ o

i
S pi

mi
+

pe

W
r iD · =r i

r + o
i
FFi

C − S1 +
d

Nf
Dpe

W
piG

3=pi
r + FdVfPstd − P0g +

d

Nf
o

i

pi
2

mi
G ]r

]pe

+ V̇ ]r

]V

= o
i,jÞ1

ei j · =pi
FgvDSei j ·H pi

mi
−

p j

mj
JD

+
s2

2
vR

2ei j · s=pi
− =p j

dGr +
]

]pe
Fgppe +

sp
2

2

]

]pe
Gr.

s19d

The isothermal-isobaric probability densityrNPT must be a
solution to Eq.s19d. It is straightforward to show that the
left-hand side is zero. The right-hand side is zero for the
choice

sp
2 = 2gpWkBT s20d

and the constraints in Eqs.s5ad and s5bd being satisfied.

IV. ORTHORHOMBIC BOX

The Parrinello–Rahman method for a fully flexible simu-
lation box is given in Ref. 3sslightly modified in Ref. 2d,

ṙ i =
pi

mi
+

pg

Wg
r i, ṗi = Fi

C −
pg

Wg
−

1

Nf

Trfpgg
Wg

pi ,

ḣ =
pgh

Wg
, ṗg = Vsp − P0I d + F 1

Nf
o

i

pi
2

mi
GI , s21d

whereh is a matrix with the columns given by the edges of
the simulation box and the pressure tensorp is defined as

Pab =
1

VFo
i

spidaspidb

mi
+ sFidasr idbG . s22d

Equations21d conserves the quantity

H8 = Hsr N,pNd +
Trfpg

Tpgg
2Wg

+ P0detfhg, s23d

whereV=detshd.
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The compressibilityk of the extended phase space of Eq.
s21d is nonzero. The Parrinello–Rahman method was devel-
oped for anisotropic solids. Therefore the simulation box can
change shape and size. Since DPD deals with complex fluid
systems that cannot resist shear forces we do not need the
simulation box to change shape. Thus it is sufficient to work
with an orthorhombic boxsall edges of the simulation box
point along the coordinate axisd. The advantage is thatk=0
if we restrict the simulation box to be an orthorhombic box.

One can derive the equations for the isotropic simulation
box by assuming thathab=V1/3dab andPab=Pdab. Similarly
one can find the equations for an orthorhombic simulation
box by demanding thath is zero off-diagonal and that only
the entries along the diagonal of Eq.s21d are included.

The proposed equations for the orthorhombic box are

ṙ i,a =
pi,a

mi
+

pg,a

Wg
ri,a, s24ad

ṗi,a = Fi,a −
pg,a

Wg
pi,a −

1

Nf

Trfpgg
Wg

pi,a − o
jÞi

gvDsr ijd

3sei j ·vi jdsei jda + o
jÞi

svRsr ijdji jsei jda, s24bd

L̇a =
pg,aLa

Wg
, s24cd

ṗg,a = VsPa − P0d +
1

Nf
o

i

pi
2

mi
− gppg,a + spjp,a, s24dd

where ha=haa , Pa=Paa , pg,a=spgdaa, and La for a
=hx,y,zj is the length of the simulation box in thea direc-
tion. The volume is given byV=LxLyLz. It should be noted
that there is no summation over repeated indices.

A. Constant-surface tension

Equationss24ad–s24dd ensure thatkPal=P0. The surface
tensiongS for an interfacial system in thexy plane is given
by

gS= kLz 3 fPz − 1
2sPx + Pydgl , s25d

where Lz is the dimension of the simulation box in thez
direction, that is, perpendicular to the interface. Hence, the
above equations for the orthorhombic box lead to zero sur-
face tension.

If we want to impose constant-surface tension and
constant-normal pressuresNPNgST ensembled we need to in-
voke an anisotropic pressure tensor in such a way that the
desired values ofgS

0 andPN
0 are obtained. Choosing the cor-

rect anisotropic target pressure tensor leads to the following
changes of the first term of the right-hand side of Eq.s24dd:

ṗg,a = AfgS
0 − hzsPN

0 − Padg + ¯ , s26d

ṗg,z = VsPz − PN
0d + ¯ , s27d

wherea=hx,yj andA is the area in thexy plane. ForgS
0=0

we retrieve Eqs.s24ad–s24dd.

V. INTEGRATION

We now describe the integration scheme first in the case
of the cubic box system. This scheme can readily be ex-
tended to the case of the orthorhombic box system.

Since DPD involves momentum-conserving Langevin
dynamics one is often, as in standard Langevin dynamics,
tempted to use too large a time stepDt. This may go unno-
ticed since the total energy does not diverge in DPD even for
a large number of time steps. Without Langevin dynamics,
the total energy would blow up quickly if the time step is too
large. Moreover, since DPD typically is applied to particle
systems with soft potentials, the undesired effects of using
too large a time step are often even more subtle. The result of
using too large a time step can be various artifacts in the
physical properties of the system which turn out to depend
strongly on the size ofDt. For example, there may be a
deviation ofkkBTlt from the value ofkBT that appears in Eq.
s5bd and this deviation may depend on the magnitude ofDt.

A host of different integration schemes exist with differ-
ent merits and of varying complexity. The standard algorithm
of DPD is the DPD-velocity-Verlet integration scheme.14,15

In this algorithm the problem, that the dissipative forces in
DPD depend on the velocities, is addressed by using inter-
mediate velocitiessa sort of “prediction step”d for the dissi-
pative forces. The DPD-velocity-Verlet algorithm is pre-
ferred because of its simplicity, speed, and robustness.
Furthermore it is relatively straightforward to include the
extended system barostat or the Langevin piston into this
algorithm.

Wheng=gp=0, Eqs.s8ad–s8dd can be propagated using
the standard velocity-Verlet algorithm. The equations are
complicated by the fact that the new particle velocities de-
pend on the newve and vice versa. This problem can be
conveniently solved quite simply by using an iterative
procedure.2

Combining the DPD-velocity-Verlet integration scheme
with the iterative procedure leads to the following algorithm:

ve9 ← ve8 ve8 ← ve e8 ← e

vi ← vi +
1

2
HSFi

C

mi
+

Fi
D

mi
− 2veviDDt +

Fi
R

mi

ÎDtJ
ve ← ve +

1

2

Fe

W
Dt

e ← e + veDt

r i ← expse − e8dhr i + viDtj

Update the volumeV
Compute the forcesFi

C,

Fi
D, andFi

R

Find the pressureP

ṽi ← vi ṽe ← ve
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ve ← ve9 + 2
Fe

W
Dt sinitial guess ofved

vi ←
expse − e8dṽi +

1

2
HSFi

C

mi
+

Fi
D

mi
DDt +

Fi
R

mi

ÎDtJ
1 + veDt

s28ad

Find Fe = Fesvi,ve,V,Pd s28bd

ve ← ṽe +
1

2

Fe

W
Dt. s28cd

The steps in Eqs.s28ad–s28cd are iterated to convergence
which happens very fast. Typically four to five iterations are
sufficient. The barostat forceFe is defined as the right-hand
side of Eq.s8dd. Notice that the iteration does not require any
evaluation of thesnonbondedd forces which is the most time
consuming part of the above algorithm. In the limitW→`
the above algorithm is identical to the DPD-velocity-Verlet
algorithm. For g=s=0 the algorithm is identical to the
velocity-Verlet algorithm of Ref. 2. Furthermore one should
notice that the particle coordinates need no additional rescal-
ing.

The above integration scheme described above for the
case of a cubic simulation box can readily be extended to
apply to the orthorhombic box system.

VI. TWO CASE STUDIES

We now turn to the application of our DPD Langevin
piston approach described above to two specific systems, a
simple isotropic fluid and an anisotropic fluid lipid-bilayer
membrane in waterlike solvent. First we have to determine
the appropriate parameters of the applied algorithms.

A. Choice of parameters

The parametersW andgp have to be chosen carefully in
order to achieve efficient sampling without disturbing the
physical system. For the cubic simulation box, the fictitious
barostat mass should be chosen as21

W= sNf + ddkBTtp
2, s29d

where characteristic time of the barostattp should be chosen
slightly larger than the smallest time scale of the particle
motions. The power spectrum of various physical quantities
should not change when the pressure coupling is applied.

If tp is chosen too large, the barostat will effectively
decouple from the particle system which leads long correla-
tion times and inefficient sampling. Iftp is chosen too small,
the coupling between the box and the particles gets too
strong involving the danger of disturbing the essential dy-
namics. On the other hand, the advantage is short correlation
times. The Langevin piston method makes it possible to use
a largetp and still have short correlation times. The appro-
priate range oftp can often be found from knowledge of the
dynamics of the studied system. By trial and error one then
adjusts the parameters such that the barostat has minimum
impact on the system and the equilibration time is tolerable.

The choice ofgp is of less importance since the effect of
the Langevin dynamics is small on the particle system in
equilibrium. However, a clever choicegp can significantly
reduce the equilibration time by avoiding “ringing” of the
pressure and by leading to a fast exponential approach to the
reference pressure. As a rule of thumbgp should be between
2/tp and 10/tp.

For the orthorhombic system the barostat massWg

should be chosen to be21

Wg = sNf + ddkBTtp
2/d. s30d

The same criteria for choosingtp and gp apply as for the
cubic simulation box.

B. Simple fluid

To test the proposed equations of motion for the isotro-
pic simulation box we consider a simple DPD fluid. Simple
means that only one bead species is present and the only
interaction is the nonbonded soft-core repulsion in Eq.s6d
with the standard choice of the parameterAi j =25kBT. The
simulation box size is initiallyV=s10r0d3 containing 3000
beads. The simulations were run for 23105 time steps. The
target pressureP0 was set to 23.649kBT/ r0

3, which gives ap-
proximately the same average box size as the initial box. The
extended system barostat time was set totp=2 and the
Langevin piston parameter togp=10/tp=5. The reason for
choosing this value oftp is the fact that the fastest time scale
in the model lipid bilayer is<0.5 due to bond stretching and
angle bending in the lipid tails.

The extended system energyH8 drifts 0.03% during 105

steps with a time step ofDt=0.01 wheng=gp=0. When
adding DPD and the Langevin piston we expectH8 to fluc-
tuate but without any overall drift. This is indeed the case as
demonstrated in Fig. 1. The drawback of using Langevin
dynamics is of course that the consistency of the simulation
algorithm cannot be checked via a criterion of energy con-
servation.

The average volume is found to bekVl
=s1000.3±0.1dr0

3. For the parameters values chosen, the vol-

FIG. 1. The extended energyH8std as defined in Eq.s10d for a simple fluid
with Ai j =25kBT. The total number of integration steps is 200 000.

124901-5 Constant-pressure and constant-surface tension simulations J. Chem. Phys. 122, 124901 ~2005!
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ume fluctuations are found to be Gaussian as seen in Fig. 2.
The volume fluctuations are related to the isothermal com-
pressibilitybT by

kdV2l = VkBTbT s31d

and the dimensionless compressibilityb is given by b
=rkBTbT, wherer is the number density. ForT=300 K and
with the given choice of soft repulsion parameterA
=25kBT, we find b−1=16.1±1.0. The parameterA=25kBT
was chosen in Ref. 22 in such a way that the simple fluid has
the compressibility of watersb−1<16d. Hence, the result ob-
tained from our Langevin piston approach is in full agree-
ment with this finding.

The power spectrum of the temperature is shown in Fig.
3. The power spectrum is found to exhibit peaks that corre-
spond to the values chosen fortp. These peaks are removed
by the Langevin piston. Using only DPDsno barostatd the
average temperaturekkBTlt=0.9996±0.0007 and with the
Langevin pistonkkBTlt=0.9996±0.0006. For the extended
systemkkBTlt=0.9991±0.0006. It is seen that the barostat
methods do not contribute to the integrator-induced deviation

of kkBTlt from the choice ofkBT made in Eq.s5bd. The tem-
perature fluctuations are not affected by the barostat meth-
ods.

A clear advantage of our Langevin piston approach can
be seen if the box is started far from equilibrium as illus-
trated in Fig. 4 which shows the equilibration of the pressure.
The autocorrelation analysis in equilibrium of the pressure in
Fig. 5 shows that with the choice ofgp=10/tp the equilibra-
tion is of the order 50–100 times as fast.

To further test our Langevin piston approach, we calcu-
lated a single-particle property of of the system being the
tracer diffusion coefficientD, which was determined to be
D=0.29 in units ofr0

2 per DPD unit time step. This value was
found not to be influenced by applying the pressure coupling.

C. Bilayer model

The parameters for the model bilayer were taken from
Ref. 13. Each lipid consists of 15 beads, three hydrophilic
head-group beadssHd, and two chains consisting of each 6
beadssTd that are hydrophobic. A waterlike solvent is mod-
eled by a single water beadsWd. In Table I the parameters for
the nonbonded interactions are listed. The DPD noise param-

FIG. 2. Probability distribution of the volume fluctuations.

FIG. 3. Power spectrum of the kinetic temperature for the simple fluid. The
spectrum has been smoothed with a Savitsky–Golay filter.

FIG. 4. Equilibration of the pressure when the system is prepared in a state
far from equilibrium.

FIG. 5. Autocorrelation of the pressure for the simple DPD fluid.
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eter s is set to 3 and the dissipation parameterg=9/2 for
kBT=1. The harmonic bond potential is given by

U2sr i,r i+1d = 1
2k2sur i,i+1u − l0d2,

wherel0 is the equilibrium distance between two consecutive
bonds in the lipid tails. The bond parametersl0=0.5r0 and
k2=128kBT/ r0

2 are used in the following. The bond bending
potential used is defined as

U3sr i−1,r i,r i+1d = k3f1 − cossf − f0dg,

wheref0 is the equilibrium angle between three consecutive
bonds. The anglef is defined as

cosf =
r i−1,i · r i,i+1

ur i−1,iuur i,i+1u
.

In the following the parameters used aref0=0 and k3

=20kBT. The simulation box volume is initiallyV=s32r0d3

containing 98 304 beads and the number of model lipids is
1688, and there are<73 000 water beads. The lipids sponta-
neously self-assemble to form a bilayer as seen in Fig. 6.
This gives approximately a tensionless membrane.

The extended system energyH8 is conserved within
0.03% after 105 time steps wheng=gp=0. The pressure and
volume fluctuations in the extended system barostat and the

Langevin piston method are found to be indistinguishable.
For both pressure-coupled systems the average kinetic tem-
perature and the fluctuations of the kinetic temperature are
the same as with the system only being thermostated by
DPD.

In the following the surface tension is given in units of
kBT/ r0

2. The surface tension is found to begS=s0.00±0.05d
for the extended system barostat and −0.02±0.08 for the
Langevin piston. The instantaneous surface tension, autocor-
relation analysis, and the box dimensions are shown on Fig.
7. The average area per lipid is found to be
s1.2079±0.0005dr0

2 which is 0.6% below what was found in
Ref. 13. The area compressibility modulusKA can be found
from the fluctuations in the areasRefs. 23 and 24d,

FIG. 6. The bilayer model of Shillcock and Lipowsky. The dark beads
represent the lipid head group and the light beads represent the carbons
along the lipid tails.

FIG. 7. Autocorrelation function of the
instantaneous surface tension. The ab-
scissas are in DPD time units. The full
lines correspond to the extended sys-
tem approach and the dashed line cor-
respond to the Langevin piston.sad Au-
tocorrelation ofgS. sbd Instantaneous
surface tensiongSstd. scd Box dimen-
sion in thez directionLz. sdd The linear
dimension of thexy plane.

TABLE I. The nonbonded soft interactions from Ref. 13. The head bead is
denoted byH, the tail bead byT, and the water bead byW.

Bead pair Ai jskBTd

H-H 25
T-T 25
W-W 25
H-W 35
H-T 50
T-W 75
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KA =
kBTkAl
kdA2l

. s32d

It is found thatKA=s158±31dkBT/ r0
2. This cannot be com-

pared directly with the findings in Ref. 13, since the authors
did not determine the area compressibility modulus for the
exact same lipid model with three head beads as above, but
for a single head lipid model. In the single head lipid model
which has approximately the same bilayer thickness they ob-
tain KA=s162±32dkBT/ r0

2.
Using only DPD sno barostatd kkBTlt=0.9994±0.0002

and with the Langevin pistonkkBTlt=0.9995±0.0002. For
the extended systemkkBTlt=0.9994±0.0002. Again it is seen
that the barostat methods do not contribute to the integrator-
induced deviation ofkkBTlt from kBT, and that the tempera-
ture fluctuations are not affected.

In order to investigate the ability of our Langevin piston
approach to stabilize a lipid bilayer with a particular nonzero
surface tension, a number of simulations were performed
where the target surface tension was set togS

0=h−10,−5,
−2,0.5,5,10j and the normal pressure toPN

0 =23.2kBT/ r0
3. In

these cases, the simulations return the average surface ten-
sions values askgSl=hNA,NA,−2.0347±0.07,0.55±0.06,
5.03±0.06,NAj. For gS

0=10 the bilayer broke apart due to
the large stress in the plane. ForgS

0=−10 the bilayer buckled
immediately, and forgS

0=−5 a long metastable planar state
was observed before the bilayer appeared to bucklesthis is
not conclusive given the length of the simulationd.

The average normal pressure waskPNl=hNA,
NA,23.200±0.002,23.198±0.004,23.200±0.002,NAj in
units of kBT/ r0

3. These results therefore clearly demonstrate
both the feasibility and the effectiveness of the approach.

It should be noted that for all the results presented
above, and for the barostat parameters chosen, the use of the
barostat does not require a smaller time step in the integra-
tion algorithm.

VII. CONCLUSION

We have presented a method for performing constant-
pressure and constant-surface tension simulations in dissipa-
tive particle dynamics using a Langevin piston approach.
The approach leads to improvements over other approaches
in terms of faster equilibration and shorter correlation times
of various system variables. In particular, the coupling of the
pressure to the system does not require smaller time steps in

the integration of the DPD equations of motion, thereby pro-
viding for faster and more efficient simulations.

With the proposed approach we believe that one can turn
DPD simulations into a versatile and convenient computer-
experimental laboratory for studying complex soft-matter
systems, both in equilibrium and out of equilibrium. In the
case of lipid membrane systems, the approach should allow
for studies of, for example, phase-separation dynamics, en-
zymatic remodeling of bilayers, as well as dynamics of lipid-
protein interactions.
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