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Constant-pressure and constant-surface tension simulations in dissipative
particle dynamics

Ask F. Jakobsen
MEMPHYS-Center for Biomembrane Physics, Physics Department, University of Southern Denmark,
Campusvej 55, DK-5230 Odense M, Denmark

(Received 14 December 2004; accepted 12 January 2005; published online 25 Martch 2005

We present a method for constant-pressure and constant-surface tension simulations in dissipative
particle dynamics using a Langevin piston approach. We demonstrate that the corresponding
equations of motion lead to the relevant ensembles and propose an appropriate scheme of
integration. After having identified a suitable set of parameters for the approach, we demonstrate the
feasibility of the approach by applying it to two different systems, a simple isotropic fluid and an
anisotropic fluid lipid-bilayer membrane in water. Results are presented for, respectively, isothermal
bulk compressibility, tracer diffusion coefficient, lipid head-group area, and isothermal area
compressibility. We find that our Langevin piston approach leads to improvements over other
approaches in terms of faster equilibration and shorter correlation times of various system
variables. ©2005 American Institute of PhysidDOI: 10.1063/1.1867374

I. INTRODUCTION faster than in molecular dynamics. Examples of systems that
have successfully been studied by DPD include colldids,
Molecular dynamics(MD) simulation in its simplest vesiclest* and biological membrangé:*®
form samples the microcanonical ensemble because the basis However, DPD is not without its problems. First of all,
of MD is simple Newtonian mechanics. Since tN®T en-  the integration of the equations of motion of DPD is highly
semble is usually the physical relevant ensemble, variousontrivial*™® Whereas inappropriate integration in MD,
algorithms have been developed to perform MD simulation.g., augmented by using too large time steps, usually mani-
under constant temperature and constant presstiithese  fests itself in some easily detectable and incorrect system
algorithms involve a specific coupling between the pressuréehavior, integration of the DPD equations of motion may
and an additional variable, thereby extending the phase spatgad to unphysical and subtle artifacts that are not easily
of the system. These so-called extended system barostagietected. This is, in particular, the case when adding an ex-
however, have the problem that the volume fluctuations shoignded system barostat or Langevin piston to the DPD inte-
a “ringing” of the volume with some decay time that dependsgration routine. This is the problem we will address in the
on the fictitious barostat mass. In order to shorten the decal®Sent paper. In particular, we will establish DPD methods
time and to dampen out the unphysical oscillations of thd®r Sampling theNPTensemble for an isotropic fluid and the
volume, the Langevin piston barostat has been develdped\PnYsT ensemble for an anisotropic fluid, wheg, is the
rendering the choice of the barostat mass less criticaf?orMal Pressure angs is an interfacial tension.
Whereas the extended system approach in itself is determin- The constant-normal pressure and constani-surface ten-

istic, the Langevin piston introduces stochastic dynamicsSlon ensembleNPyysT, is relevant for interfacial systems

into the system. The stochastic dynamics improves the e1‘fecs-uch as fluid lipid-bilayer membranes in water. When mod-

tive ergodicity of the simulatiortiswhich is necessary in or- eling lipid bilayers it is important to be able to apply a spe-

_ . cific surface tension. Especially the tensionless membrane is
der to extract ensemble averages from the MD simulations

In additi he L i d ics h h il of of interest since it is believed that a self-assembled mem-
n addition, the Langevin dynamics has the potential of rey) ;o hag zero surface tension. A method for accomplishing

dgcing correlation times. Combining the La.mgevin piStonconstant surface tension in DPD involves combining DPD
with standard Langevin dynamics for the particftfais cou- it a Monte Carlo algorithm for updating the size of the

pling to a heat bathhas been shown to improve ergodicity gjmyation box every now and then in an abrupt and stochas-
and shorten correlation timé&g. tic way!’ By this method, the normal pressure is not an
Dissipative particle dynamid®PD) simulatiof® has in  jndependent variable since the volume of the box is fixed.
recent years emerged as a novel numerical technique to stulyoreover, the problem remains as to how often one should
soft matter and complex fluids at a large range of length anderform a Monte Carlo step to update the simulation box
time scales. DPD is a stochastic method useful to simulatgize. Other workers have found the tensionless state of model
coarse-grained models of fairly complex systems involving dipid membranes by trial and error within the canonical
large number of particles. In contrast to stochastic Montesnsemblé?
Carlo simulation, DPD has the advantage that it preserves In the following, a systematic method for sampling the
the hydrodynamic modes, and the equilibration is muchNPTand theNPyysT ensembles in DPD will be established.
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The equations of motion will be shown to produce the right
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All beads have the same masg and cutoffr (effective

ensembles. An algorithm for integrating the equations will besize). The energy scale is set layT. We will use units where
presented. The feasibility of the methods is tested on twall these quantities are unity. Fromy, ro, andkgT, a time

well-known systems. For testing tiPT ensemble simula-
tions we use a simple DPD fluid. For testing tNé&yysT

ensemble simulations we consider a model lipid-bilayer sys-

tem which is an anisotropic fluid.

II. DISSIPATIVE PARTICLE DYNAMICS

In DPD the total force on particle at positionr; and
with momentump; is given by

scalety=\myra/ksT can be extracted, and in the following

all time scales will be in this DPD time unit.

The DPD particles are simulated in a box with periodic
boundary conditions. In the case of the isotropic fluid, the
appropriate choice of box shape is that of a cube whose
volume changes by keeping the shape fixed. Since the bilay-
ers we are interested in are also fluids, they cannot resist
shear. Therefore the appropriate simulation box has the shape
of an orthorhombic cell, i.e., all normals to the faces of the

p=FC+> Fi? > Fil?, simulation box point along the canonical coordinate axes.
j#i j#i

(&

whereF¢ is a conservative force exerted on particteom
particlej. The dissipative forc&} and the random forcgf;
have the form

[ll. CUBIC BOX

The equations of motions for d-dimensional cubic

Fi']?: - yop (1) (& - Vij)&;, (2 simulation box containindN particles andN{=dN-d=dN
degrees of freedom are the following:
Fi?: owg(rij) &8, (3
PP 8
wherer;;=r-r;, rj=|r|, ;=rj/r;, andv;=v;-v;, where = W (8a)
v; is the velocity of particld, and wp and wg are arbitrary !
weight functions.
The variableg; represent Gaussian white noise wéh p; = Fic— E yop(rij) (&) - Vi))g;
=¢;i and the following stochastic properties: J#i
(1)) = d)Ppe
(1) =0, +2 owr(réje; ‘(1+_)_pi' (8b)
j#i N/ W
& & () = (i Gjr + 8 i) St —t'). (4)
The parametely controls the strength of the dissipation and . dVp,
the parametew the strength of the noise. The thermostat W (80
consisting of the random and dissipative forces in Hg.
conserves momentum pairwise, so DPD is a momentum- g )
conserving thermostat. b= dVP(t) - Pl + — P _ + 8d
It has been proved that the corresponding Fokker—Planck pe= dVIP(D) - Pol Nfz m, YoPe Ol (8d)

equation of Eq(1) has the canonical equilibrium distribution
as a solution given the following constraiits:

[wR(r)]ZZ wp(r),

?=2kgTy.

where &; has the property as defined in B¢ and &, is
(53) Gaussian white noise with the propertidg,)=0 and
(€p(D€,(t"))=06(t—t"). The piston “momentum” is denoted
(5b) Pe,V is the simulation box volumey is the piston “mass,”
P, is the target pressure, amdis the dimensionality of the
The above is thus a fluctuation-dissipation theorem for theimulation system. It is called the extended system method
DPD system. when y,=0,=0, since volume and volume momentum have
In DPD simulationswp(r) is often chosen to be been coupled to the equations of motion. Whgrand o, is
larger than zero, the method is called the Langevin piston
wp(r) = { method. Later we will find the exact relation betwegyand
wherer is the cutoff distance.

ap. So far we will assume that,— 0 wheny,— 0.
The instantaneous pressupét) is defined as
A conservative soft-core repulsion is usually modeled
simply by

Fi = Ajop(r)e;,

1-r/rg,
01

r<rg

(6)

r=r,

P(t)zi[Epj@ F-C-r} (©
dy i m i : "

()

where wp is chosen as in Eq6). The repulsion parameter whereV is the volume of the simulation box. Notice that this
A, gives different particle/bead species their identity. Tois not the instantaneous pressure calculated from the virial
create model polymers, beads are tied together by harmong&xuation, since the stochastic part is not included in(Bg.
springs, and to add rigidity to the structure, angle-bending In the limit y—0 and y,—0, it is straightforward to
potentials are applied. show that the dynamical system conserves the quantity
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2
r_ N AN Pe dp: = | E€ - ( &_EL> -l dt
H —H(r P )+ I:’OV"' 2Wa (10) P; i E 'wa(ru) e|] m mj elj
where’H is the Hamiltonian of the particle subsystem. The + > cwg(r;)e;dW; — (1 +£>p—5pidt,
energy functiorH’ will be referred to as the extended system j#i S N¢/ W
energy. Note thatH’ is not a Hamiltonian since Egs. (17)

(8a)—(8d) cannot be retrieved as derivativestdf. The com- d < p
pressibility « of the extended phase space as defined in Ref.  dp.= | dV[P(t) - Po] + WZ HI = YpPe |dt+ o, dW,
18 is given by b
wheredW anddW; =dW; are independent increments of the
(11) Wiener process with the latter having the property

. . J . d
K:Evri 'ri"'zvpi Pit Pt —V=0.
i i J dV\/IJdV\l,,J, = (5”15”/ + 5|Jr5]|r)dt (18)

P. AV

One can think of Eq(8a—(8d) as a coordinate transforma- Both dW and dW; are infinitesimals of order 1/2. The
tion of the extended phase space, and the Jacabadrthis  Fokker—Planck equation that corresponds to the stochastic
coordinate transformation is found to Be 1 (Ref. 2 since  differential equation$8a—(8d) is

ap ( Pi | Pe ) |: c < d ) Pe ]
aJ — + —+—r. |-V + EC—|1+— |=¢p.
a 12 at ; m o w'i) P 2 i N WP
o d P-2 dp - dp
Thus the phase space has a constant unit megicl and XVpp+ ldV[P(t) ~Pol+ ﬁz EI]E * VH/
the dynamical system obeys the Liouville theor&r’ S my | ap.
Pi _Pj
- ' : 5 P32 = 2 Qj.vpi{wa(qj.{_-_ })
a—f+2ri-VriP+Epi-Vpip+p€£+)}—§;:o_ (13) P71 mom
i i e P 2 ) EE )
One can justify that Eqs8a—(8d) in the particle sub- + 0k (V5 =) [+ 9Pt 50 o

system actually sample the isothermal-isobaric ensemble in (19

the limit y— 0 andy,— 0. The phase-space probability den-

sity for the extended system is given by The isothermal-isobaric probability densipypr must be a
solution to Eq.(19). It is straightforward to show that the

8(H' - Hp) left-hand side is zero. The right-hand side is zero for the

pnprr (1N, pN, p V) o (14)

Quprr (N, pN, pa ) choice
il i 5= 2y, WieT (20)
The probability density of the extended system when
coupled to a heat bath is given by and the constraints in Eqéa and (5b) being satisfied.
exp(~ H'/ksT) (15) V. ORTHORHOMBIC BOX

rN pN .
pNPT( P :pevv) o QNPT(rNalepevV) - - -
The Parrinello-Rahman method for a fully flexible simu-

The integration over the barostat momentpprgives a con-  1ation box is given in Ref. 3slightly modified in Ref. 2,

stant and hence, i P, Py b= FC- Py _ 1 Trlpg]
Pom Wy T w Newy,
NpN V)M;
pnpr(r,po,
NP QuerrVpN V) _ph . 1P
N h:—g—, pg:V(p—Po|)+ —E— I, (21)
H(r™,p") +PY Wy Ni T my
xexp - ———— |, (16)
keT

whereh is a matrix with the columns given by the edges of

the simulation box and the pressure tengds defined as
which precisely is the phase-space probability density for the P ®

; e 1 : .

isobaric-isothermal ensemble. _ PEEDY (P)a(Pg F)alrs). (22
Equations(8a—(8d) can be put onto a mathematically vV

well-defined form for stochastic differential equations which . )

makes it straightforward to apply the standard procedures fdgduation(21) conserves the quantity

finding the associated Fokker—Planck equaffbEquations Trplp]

(8b) and (8d) have stochastic elements and require special H' =H(r",p") +ﬁ—g+ Podeth], (23
attention. In the stochastic terms the differentials are re- 9

placed by stochastic differentials, whereV=deth).
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The compressibility of the extended phase space of Eq.V. INTEGRATION
(21) is nonzero. The Parrinello-Rahman method was devel-

oped for anisotropic solids. Therefore the simulation box can
change shape and size. Since DPD deals with complex flui
systems that cannot resist shear forces we do not need t
simulation box to change shape. Thus it is sufficient to work

with an orthorhombic boxall edges of the simulation box
point along the coordinate ayisThe advantage is that=0

if we restrict the simulation box to be an orthorhombic box.

We now describe the integration scheme first in the case
gf the cubic box system. This scheme can readily be ex-

fended to the case of the orthorhombic box system.

Since DPD involves momentum-conserving Langevin
dynamics one is often, as in standard Langevin dynamics,
tempted to use too large a time st&h This may go unno-

ticed since the total energy does not diverge in DPD even for

One can derive the equations for the isotropic simulatiorf* [arge number of time steps. Without Langevin dynamics,

box by assuming that,;=V"35,; andP,z=P5,s. Similarly

one can find the equations for an orthorhombic simulatio

box by demanding that is zero off-diagonal and that only
the entries along the diagonal of EQ1) are included.
The proposed equations for the orthorhombic box are

. Pi,« pga
ri,a: . + Wg ri,w (24a)
- Pg.a 1 Trlpgl
. =F —t9agy _ —_ tFG, N
pl,a I, Wg 1, Nf Wg pl,a %’wa(rlj)
X (& 'Vij)(eu')a"'z owr(rij) &(€j) o (24b)
j#i
p aLa
L,=hee (240
W,

. 1w p?
Poa=V(Pe=Po)+ > = ypy o+ 0pbpar (240
Ne 5T my

where h,=h,,, P,=Puu, Pga=(Pglaas and L, for «
={x,y,z} is the length of the simulation box in the direc-
tion. The volume is given by=L,L,L,. It should be noted
that there is no summation over repeated indices.

A. Constant-surface tension

Equations248—24d ensure thatP,)=P,. The surface
tensionys for an interfacial system in they plane is given
by

ys= (L, X [P, = 3(P+P)]),

where L, is the dimension of the simulation box in the

(25)

the total energy would blow up quickly if the time step is too

flarge. Moreover, since DPD typically is applied to particle

systems with soft potentials, the undesired effects of using
too large a time step are often even more subtle. The result of
using too large a time step can be various artifacts in the
physical properties of the system which turn out to depend
strongly on the size ofAt. For example, there may be a
deviation of(kgT); from the value okgT that appears in Eq.
(5b) and this deviation may depend on the magnitudaof

A host of different integration schemes exist with differ-
ent merits and of varying complexity. The standard algorithm
of DPD is the DPD-velocity-Verlet integration schenie?

In this algorithm the problem, that the dissipative forces in
DPD depend on the velocities, is addressed by using inter-
mediate velocitiega sort of “prediction step”for the dissi-
pative forces. The DPD-velocity-Verlet algorithm is pre-
ferred because of its simplicity, speed, and robustness.
Furthermore it is relatively straightforward to include the
extended system barostat or the Langevin piston into this
algorithm.

When y=1v,=0, Egs.(88—8d) can be propagated using
the standard velocity-Verlet algorithm. The equations are
complicated by the fact that the new particle velocities de-
pend on the new, and vice versa. This problem can be
conveniently solved quite simply by using an iterative
proceduré.

Combining the DPD-velocity-Verlet integration scheme
with the iterative procedure leads to the following algorithm:

n !

direction, that is, perpendicular to the interface. Hence, the
above equations for the orthorhombic box lead to zero sur-
face tension.

If we want to impose constant-surface tension and
constant-normal pressufl PyysT ensemblgwe need to in-
voke an anisotropic pressure tensor in such a way that the
desired values of2 and P, are obtained. Choosing the cor-
rect anisotropic target pressure tensor leads to the following
changes of the first term of the right-hand side of Eud):

Poo=AY2— (PR =PI+ -, (26)

Pgz=V(P,— PR+ -+, (27)

wherea={x,y} andA is the area in thety plane. Fory2=0
we retrieve Eqs(24a—(24d).

Vi — Vi

vie—vl viev, €€
1) (FC FP FR —
Vie—Vi+ =) | —+— - 20V JAt+ — At
2 m m m
1F
+=—At
Ve Vet

€e—e+v At

r, «— exple— €){r; + Vv;At}
Update the volume’
Compute the forceB’,
FP, andFR}

Find the pressur@

Ve U,
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0.0 ——————————————————

n FE e L ]
Ve— v+ 2V—vAt (initial guess ofv ) I — Extended system (¥,=0) |
r . e Langevin piston 1
1| /EC EP FR 0005 , - 1 : |
exple= €V + 5 (H'+—'>At+—'\At O ; i
i i i T i A :
7 28 = : : ]
- 1+ At (289 s
Find F.=F(v,,0,V,P) 28y = ¢
-0.005
1F I
7.+ ——At. 28cC
P e ow (289 [
o
The steps in Eqs(284—(280 are iterated to convergence 0 500 e i O it 1500 2000

which happens very fast. Typically four to five iterations are

sufficient. The barostat force, is defined as the right-hand FIG. 1. The extended enerdy (t) as defined in Eq(10) for a simple fluid

side of Eq.(8d). Notice that the iteration does not require anywith A,;;=25gT. The total number of integration steps is 200 000.

evaluation of th&nonbondegiforces which is the most time

consuming part of the above algorithm. In the lifdit— oo The choice ofy, is of less importance since the effect of

the above algorithm is identical to the DPD-velocity-Verletthe Langevin dynamics is small on the particle system in

algorithm. For y=0=0 the algorithm is identical to the equilibrium. However, a clever choicg, can significantly

velocity-Verlet algorithm of Ref. 2. Furthermore one shouldreduce the equilibration time by avoiding “ringing” of the

notice that the particle coordinates need no additional rescapressure and by leading to a fast exponential approach to the

ing. reference pressure. As a rule of thumpshould be between
The above integration scheme described above for the/rp and 10fr,.

case of a cubic simulation box can readily be extended to For the orthorhombic system the barostat mafg

apply to the orthorhombic box system. should be chosen to Be

VI. TWO CASE STUDIES Wy = (N; + d)kgTr/d. (30)
We now turn to the application of our DPD Langevin The same criteria for choosing, and vy, apply as for the

piston approach described above to two specific systems, Gubic simulation box.

simple isotropic fluid and an anisotropic fluid lipid-bilayer

membrane in waterlike solvent. First we have to determine

the appropriate parameters of the applied algorithms. B. Simple fluid

To test the proposed equations of motion for the isotro-
pic simulation box we consider a simple DPD fluid. Simple

The parameter®/ and y, have to be chosen carefully in means that only one bead species is present and the only
order to achieve efficient sampling without disturbing theinteraction is the nonbonded soft-core repulsion in &j.
physical system. For the cubic simulation box, the fictitiouswith the standard choice of the parametéf=25gT. The
barostat mass should be choseft as simulation box size is initially’=(10ry)® containing 3000

_ 2 beads. The simulations were run fox20° time steps. The

W= (N + dkgT7, (29) target pressur®, was set to 23.64QT/r3, which gives ap-
where characteristic time of the barostgtshould be chosen proximately the same average box size as the initial box. The
slightly larger than the smallest time scale of the particleextended system barostat time was setrfe2 and the
motions. The power spectrum of various physical quantitied-angevin piston parameter tg,=10/7,=5. The reason for
should not change when the pressure coupling is applied. choosing this value of;, is the fact that the fastest time scale

If 7, is chosen too large, the barostat will effectively in the model lipid bilayer is<0.5 due to bond stretching and
decouple from the particle system which leads long correlaangle bending in the lipid tails.
tion times and inefficient sampling. #; is chosen too small, The extended system enerbly drifts 0.03% during 19
the coupling between the box and the particles gets tosteps with a time step oAt=0.01 wheny=v,=0. When
strong involving the danger of disturbing the essential dy-adding DPD and the Langevin piston we expEctto fluc-
namics. On the other hand, the advantage is short correlatidnate but without any overall drift. This is indeed the case as
times. The Langevin piston method makes it possible to usdemonstrated in Fig. 1. The drawback of using Langevin
a large, and still have short correlation times. The appro-dynamics is of course that the consistency of the simulation
priate range ofr, can often be found from knowledge of the algorithm cannot be checked via a criterion of energy con-
dynamics of the studied system. By trial and error one therservation.
adjusts the parameters such that the barostat has minimum The average volume is found to be(V)
impact on the system and the equilibration time is tolerable.:(1000.3io.1r8. For the parameters values chosen, the vol-

A. Choice of parameters
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0.1 — r r r —T T T T T T T T
£
T 2 201 Langevin piston 1
= - 2 & e Extended system
E 3 = hog 3
0.08|- g 17 g b
£ i
- ~ o 10k 1 —
E 3 S o
4 i ] g [l
E 0.06 |- - 4] 2 SE “ i
B L © IR
2 E E - o
© E E k )
£ 4 2O
5 004 & s H 1
k<] « h
> 5 i
» -10 ‘H 1
E i
3 1
0.0z} e £ Fy E
% -201- 1 e
‘ . o | | 0 100 200 300 400 500
0 g ) . . . .
40 -30 -2¢ -16 0 1o 20 30 40 0 10 20 30 40 50
Volume around mean time in DPD units
FIG. 2. Probability distribution of the volume fluctuations. FIG. 4. Equilibration of the pressure when the system is prepared in a state

far from equilibrium.

ume fluctuations are found to be Gaussian as seen in Fig. 2. ) .
The volume fluctuations are related to the isothermal com®f (keT): from the choice oksT made in Eq(Sh). The tem-
pressibility 8r by perature fluctuations are not affected by the barostat meth-

ods.
(V%) = VkgT B (3D A clear advantage of our Langevin piston approach can
be seen if the box is started far from equilibrium as illus-
and the dimension'ess Compressib”iﬂ iS given by B trated in F|g 4 Wh|Ch ShOWS the equilibration Of the pl’essure.
=pksT By, wherep is the number density. FaF=300 K and The autocorrelation analysis in equilibrium of the pressure in
W|th the given Choice Of Soft repu'sion parametgt F|g 5 shows that with the choice Q’EZlO/Tp the equilibra'
=25sT, we find 571=16.1+1.0. The parameted=25k;T tion is of the order 50-100 times as fast.
was chosen in Ref. 22 in such a way that the simple fluid has ~ To further test our Langevin piston approach, we calcu-
the compressibility of watef3 1~ 16). Hence, the result ob- lated a single-particle property of of the system being the
tained from our Langevin piston approach is in fu” agree_tracer diﬁusion CoeffiCienD, Wh|Ch was determined to be
ment with this finding. D=0.29 in units off3 per DPD unit time step. This value was
The power spectrum of the temperature is shown in Figfound not to be influenced by applying the pressure coupling.
3. The power spectrum is found to exhibit peaks that corre-
spond to the values chosen fgy. These peaks are removed
by the Langevin piston. Using only DPho barostatthe
average temperaturégT);=0.9996+0.0007 and with the The parameters for the model bilayer were taken from
Langevin piston{(kgT);=0.9996+0.0006. For the extended Ref. 13. Each lipid consists of 15 beads, three hydrophilic
system(kgT)=0.9991+0.0006. It is seen that the barostathead-group beaddd), and two chains consisting of each 6

methods do not contribute to the integrator-induced deviatiofpeads(T) that are hydrophobic. A waterlike solvent is mod-
eled by a single water bedW). In Table | the parameters for

the nonbonded interactions are listed. The DPD noise param-

C. Bilayer model

r 1p=0.5, 'yp=0.0
Yoo ‘tp=2.0, 'yp=0.0
.......... 1p=2.0, yp=5.0 -

Intensity

0 e -
r e 12207510
I I I ! IR 1 ' 1 r —_— ‘[p=2.0, ’Yp=5.0 1
1 4L . L . ! . 1 . | . ]
Frequency 0 50 100 150 200 250
time in DPD units
FIG. 3. Power spectrum of the kinetic temperature for the simple fluid. The
spectrum has been smoothed with a Savitsky—Golay filter. FIG. 5. Autocorrelation of the pressure for the simple DPD fluid.
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TABLE I. The nonbonded soft interactions from Ref. 13. The head bead is

denoted byH, the tail bead byT, and the water bead by.
Bead pair Ajj(kgT)
H-H 25
T-T 25
W-W 25
H-wW 35
H-T 50
T-W 75

o
Yirss vk
5 b2
A

m“

4

eter o is set to 3 and the dissipation paramejer9/2 for
kgT=1. The harmonic bond potential is given by

Up(ri,fisg) = %k2(|ri,i+l| -19)?,

wherel, is the equilibrium distance between two consecutive
bonds in the lipid tails. The bond parametéss 0.5 and
k2=128<BT/r§ are used in the following. The bond bending
potential used is defined as

FIG. 6. The bilayer model of Shillcock and Lipowsky. The dark beads
represent the lipid head group and the light beads represent the carbons
Us(ri—1,Mi,Mis1) =Kg[1 — cogp — ¢bp) ], along the lipid tails.

where ¢y is the equilibrium angle between three consecutive . o
bonds. The angle is defined as Langevin piston method are found to be indistinguishable.

For both pressure-coupled systems the average kinetic tem-
perature and the fluctuations of the kinetic temperature are
. the same as with the system only being thermostated by
[ricaillrijaal DPD.

. In the following the surface tension is given in units of
In the following the parameters used amp=0 and ks kgT/r2. The surface tension is found to hg=(0.00+0.03

=20kgT. The simulation box volume is initiallp’=(32r)3 B
containing 98 304 beads and the number of model lipids isfor the extended system barostat and ~0.02+0.08 for the

1688, and there are 73 000 water beads. The lipids sponta- Langevin piston. The instantaneous surface tension, autocor-
neously self-assemble to form a bilayer as seen in Fig. g€lation analysis, and the box dimensions are shown on Fig.
This gives approximately a tensionless membrane. 7. The average area per lipid is found to be

The extended system enerdy’ is conserved within (1.2079i0.000}3’% which is 0.6% below what was found in
0.03% after 1Btime steps whery= ¥,=0. The pressure and Ref. 13. The area compressibility modulkg can be found
volume fluctuations in the extended system barostat and thieom the fluctuations in the areg®efs. 23 and 24

Fiq:-Ts
COS¢: i—-1j i,i+1

325

- 32 B

Lk,

FIG. 7. Autocorrelation function of the
- - instantaneous surface tension. The ab-
¥ E scissas are in DPD time units. The full

autocorrelation(yy)
(=]

o
[$)]
L I

-1 o — K e lines correspond to the extended sys-
@ 0 10 20 30 40 50 (o) 0 250 500 750 tem approach and the dashed line cor-
10— 325 respond to the Langevin pisto@) Au-

| i tocorrelation of ys. (b) Instantaneous
L . surface tensionyg(t). (c) Box dimen-

o 0 - i | B - . sion in thez directionL,. (d) The linear
& &1 7 L I b dimension of thexy plane.
P 0 B o 32
éw AN ] h
> [ ]
5 -] L ]
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kg T(A) the integration of the DPD equations of motion, thereby pro-
Ka= W (32 viding for faster and more efficient simulations.
With the proposed approach we believe that one can turn
It s found thatkx=(158+30ksT/r This cannot be com- DPD simulations into a versatile and convenient computer-
pared directly with the findings in Ref. 13, since the authorsexperimental laboratory for studying complex soft-matter
did not determine the area compressibility modulus for thesystems, both in equilibrium and out of equilibrium. In the
exact same lipid model with three head beads as above, bghse of lipid membrane systems, the approach should allow
for a single head lipid model. In the single head lipid modelfor studies of, for example, phase-separation dynamics, en-
which has approximately the same bilayer thickness they obzymatic remodeling of bilayers, as well as dynamics of lipid-
tain K=(162+32kgT/r}. protein interactions.
Using only DPD (no barostat (kgT);=0.9994+0.0002
and with the Langevin pistogkgT);=0.9995+0.0002. For ACKNOWLEDGMENTS
the extended systefigT),=0.9994+0.0002. Again it is seen MEMPHYS-Center for Biomembrane Physics is sup-
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