

Supporting Information

for Adv. Energy Mater., DOI: 10.1002/aenm.202202949

Characterization of the Solid Electrolyte Interphase at the Li Metal–Ionic Liquid Interface

Moon Young Yang, Sergey V. Zybin, Tridip Das, Boris V. Merinov,* William A. Goddard,* Eun Kyung Mok, Hoe Jin Hah, Hyea Eun Han, Young Cheol Choi, and Seung Ha Kim

Supporting Information for

Characterization of the Solid Electrolyte Interphase at the Li Metal - Ionic Liquid Interface

Moon Young Yang¹, Sergey V. Zybin¹, Tridip Das¹, Boris V. Merinov¹*, William A. Goddard III¹*, Eun Kyung Mok², Hoe Jin Hah², Hyea Eun Han², Young Cheol Choi², and Seung Ha Kim³

¹Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, USA

²Battery R&D, LG Energy Solution, Yuseong-Gu, Daejeon 34122, Republic of Korea

³Corporate R&D, LG Chem, LG Science Park, Gangseo-Gu, Seoul 07796, Republic of Korea

*Corresponding authors: Email: bmerinov@gmail.com and wag@caltech.edu, copy to: merinov@caltech.edu

This PDF file includes:

- 1. Computational Details
- 2. Figures S1 to S13
- 3. Table S1
- 4. References
- 5. Reactive force field parameters

COMPUTATIONAL DETAILS

ReaxFF Reactive Force Field

ReaxFF is a general bond order (BO) based force field method that allows bond breaking and formation processes during simulations. The ReaxFF parameters are based on fitting to quantum mechanics (QM) calculations. The general form of the ReaxFF energy terms are following:

$$E_{\text{system}} = E_{\text{bond}} + E_{\text{over}} + E_{\text{under}} + E_{\text{lp}} + E_{\text{val}} + E_{\text{tor}} + E_{\text{Coul}} + E_{\text{vdW}}$$
(1)

where the partial contributions to the total energy are valence terms: bond, over-coordination penalty, and under-coordination stability, lone-pair, valence angle and torsion, and non-bonding terms: Coulombic and van der Waals (vdW) energies.

ReaxFF uses the concept of BOs to determine the bonded interactions among all the atoms in a system. BOs are a continuous function of the distance between bonded atoms, and contributions from σ , π , and $\pi\pi$ bonds are calculated from the following equation.

$$BO'_{ij} = BO^{\sigma}_{ij} + BO^{\pi}_{ij} + BO^{\pi\pi}_{ij}$$

= $\exp\left[p_{bo1} \cdot \left(\frac{r_{ij}}{r_o^{\sigma}}\right)^{p_{bo2}}\right] + \exp\left[p_{bo3} \cdot \left(\frac{r_{ij}}{r_o^{\pi}}\right)^{p_{bo4}}\right] + \exp\left[p_{bo5} \cdot \left(\frac{r_{ij}}{r_o^{\pi\pi}}\right)^{p_{bo6}}\right]$ (2)

where BO_{ij}^{σ} , BO_{ij}^{π} , and $BO_{ij}^{\pi\pi}$ are the partial contributions of σ -, π - and, $\pi\pi$ -bonds between atoms *i* and *j*, r_{ij} is the distance between *i* and *j*, r_o^{σ} , r_o^{π} , and $r_o^{\pi\pi}$ are the bond radii of σ -, π - and, $\pi\pi$ -bonds, respectively, and p_{bo} terms are empirical parameters fit quantum mechanics (QM) data.

Non-bonded interactions (vdW and Coulomb) are calculated between every pair of atoms, regardless of their connectivity. A more detailed description of the ReaxFF method is provided in previous studies.^{1,2}

ReaxFF Development

The ReaxFF parameters for the Li anode/IL electrolyte system were developed based on the previous study for Li-S systems.³ In the fitting procedure, the parameters were trained extensively against QM data describing bond dissociation (Fig. S1 to S3) and equation of state (Fig. S4). Here the QM calculations were performed using the Gaussian09 program⁴ at the B3LYP/6-31G(d,p) level. Moreover, heats of formation of crystalline phases (Table. S1) and density of the [TFSI][BMIM] IL electrolyte (Fig. S5) data were included to fit the ReaxFF parameters. The optimization of the parameters was performed to minimize the sum of the following error

$$Error = \sum_{i}^{n} \left[\frac{x_{i,\text{QM}} - x_{i,\text{ReaxFF}}}{\sigma_{i}} \right]^{2}$$
(3)

where x_{QM} is the QM value, x_{ReaxFF} is the ReaxFF value, and σ_i is the weight assigned to a data point, *i*. The optimized ReaxFF parameters show overall good fitting to the QM data and reproduce well experimental data. Although the ReaxFF bond dissociation curves do not exactly fit the whole DFT plots, they are in reasonable agreement with the QM data and, more importantly, reproduce well the equilibrium bond length and bond dissociation energy that are critical for proper modeling of the bond breaking and formation processes.

The developed ReaxFF parameters are at the end of the Supporting Information.

ReaxFF MD Simulations

We started with ReaxFF MD on a small system containing 4 TFSI to validate the optimized ReaxFF parameters against QM. The system was constructed based on our previous QM-MD simulations,⁵ where five Li layers (84 Li) were increased to sixteen layers (196 Li), leading to the system size of $13.4 \times 13.4 \times 27.5$ Å³. After the minimization, a short NVT (constant particles, volume, and temperature) MD was carried out at 10 K for 1 ps to generate initial velocities for the atoms. The system temperature was increased from 10 K to 400 K over 5 ps using NVT, which was followed by NPT (constant particles, volume, and pressure) at 400 K for 100 ps.

For the production runs, a larger system was prepared to describe the SEI layer formation at realistic distance and time scales. The system consisted of a ~10 nm thick Li anode and a ~19 nm thick [TFSI][BMIM] IL electrolyte with periodic lateral dimensions of 4.5 nm \times 4.5 nm, where ~10 % of the BMIM was replaced with Li-ion. The electrolyte was constructed based on our previous study.⁶ Two layers of Li and IL molecules at each end were fixed to force the reactions to occur at only one interface. After the minimization, a short NVT MD was carried out at 10 K for 10 ps to generate initial velocities for the atoms. The system temperature was gradually increased from 10 K to 300 K or 400 K over 50 ps using NVT MD. The production runs were performed at the target temperature for 1 ns. The model for 400 K had a slightly longer electrolyte, ~20 nm, than that of 300 K to take into account the lower density at the higher temperature (Fig. S5B).

All MD simulations were performed under ambient conditions using LAMMPS program.⁷ The time step was set to 0.5 fs. The Nose-Hoover thermostat and barostat were employed for NVT and NPT simulations. The charge equilibration (QEq) method was used for Coulomb interactions.⁸ VMD was used for bond and radial distribution function (RDF) analyses and visualization.⁹ The IL molecules were regarded as decomposed if the structure contains one or more bond lengths longer than its original distance by 50 %.

The chemical reactions and SEI formation occurred in our simulations under ambient conditions. The reactions at the interface between the Li-metal and IL are basically driven by highly reactive Li-metal.

FIGURES

Figure S1. Molecular structures of the electrolyte. The structures and bond lengths between two atoms within (A) TFSI and (B) BMIM molecules, respectively, optimized by DFT and ReaxFF (provided in parentheses).

Figure S2. ReaxFF parameter optimization for TFSI. Bond dissociation energies of TFSI, where blue and red represent DFT and ReaxFF.

Figure S3. ReaxFF parameter optimization for BMIM. Bond dissociation energies of BMIM, where blue and red represent DFT and ReaxFF.

Figure S4. ReaxFF parameter optimization for crystalline phases. Equation of states of (A) Li (bcc), (B) LiF, (C) Li₂O, (D) Li₂S, (E) Li₃N, and (F) Li₂C₂, where blue and red represent DFT and ReaxFF results, respectively.

Figure S5. The densities of the IL electrolyte from ReaxFF MD simulations. (A) The structure of the [TFSI][BMIM] electrolyte, where about 10% of BMIM was replaced by Li (Li: cyan, F: purple, C: gray, N: blue, O: red, S: yellow, and H: white). (B) The estimated densities at 300 K (blue) and 400 K (red) from the 200 ps NPT MD simulations. The experimental density at room temperature is shown with a gray line.¹⁰

Figure S6. The DFT-MD simulation for a small system at 400 K.^[5] (A) Top view (upper) and side view (bottom) of the initial structure containing 4 TFSI molecules on the Li slab layer (84 Li). (B) Bond distances within each TFSI molecule at the beginning of the simulation.

The following colors represent the species: Li – cyan, F – purple, C – gray, N – blue, O – red, S – yellow, and H – white. The gray box indicates a bond breaking range from 2.0 Å to 2.8 Å, which is ~50 % longer than the original bond length for the shortest C–F bond, 1.35 Å, and the longest C–S bond, 1.89 Å.

Figure S7. The ReaxFF MD simulation for a small system at 400 K. (A) The initial structure of the system containing 4 TFSI molecules on the thicker Li slab layers (196 Li) compared to that of DFT-MD. (B) Bond distances within each TFSI molecule at the beginning of the simulation. (C) A snapshot structure after 100 ps MD simulation showing fully decomposed anions by Li, where the bond distance cutoff for visualization was set to 2.0 Å.

The following colors represent the species: Li – cyan, F – purple, C – gray, N – blue, O – red, S – yellow, and H – white. The gray box indicates a bond breaking range from 2.0 Å to 2.8 Å, which is ~50 % longer than the original bond length for the shortest C–F bond, 1.35 Å, and the longest C–S bond, 1.89 Å.

Figure S8. The initial Li-metal – [TFSI][BMIM] model system (Li: cyan, F: purple, C: gray, N: blue, O: red, S: yellow, and H: white). Li and IL molecules at both ends (dark gray) were fixed to allow the reactions only at one interface.

Figure S9. (A) The distribution of the atomic densities of the fully decomposed (red), partially decomposed (blue), and not decomposed (green) TFSI, at different time steps. (B) The snapshots of representative decomposition products of the TFSI anions from the final frame (Li: cyan, F: purple, C: gray, N: blue, O: red, S: yellow, and H: white). The anode side of the SEI consists of the fully decomposed components (red box), while small fragments (blue box) and large fragments (black box) mainly contribute to the middle and electrolyte parts of the SEI, respectively.

Figure S10. The estimated potential energy of the Li-metal – [TFSI][BMIM] system along the *x*-direction after different time intervals of the simulation.

Figure S11. The RDF plots for (A) O-Li, (B) S-Li, and (C) N-Li pairs, respectively. The ranges of each region are indicated in Figure 3A. The SEI-inorg is not shown in C, because no N species are in the inorganic layer.

Figure S12. Representative interactions between a Li-ion and TFSI anions in the [TFSI][BMIM] IL. Oxygens of the TFSI anions interact strongly with the Li-ion (Li: cyan, F: purple, C: gray, N: blue, O: red, S: yellow, and H: white).

Figure S13. The SEI layer showing two distinct phases: inorganic (~2.5 nm thick) and organic (~12.5 nm thick). The inorganic phase is composed only of products of fully decomposed TFSI. The following colors represent the species: Li - cyan, F – purple, C – gray, N – blue, O – red, S – yellow, and H – white.

TABLES

Crystalline phases	Experiment ^{Refs}	ReaxFF
LiF	-147.23 ¹¹	-146.09
Li ₂ O	-142.90 ¹¹	-142.83
Li ₂ S	-105.5011	-106.92
Li ₃ N	-40.94 ¹²	-47.13
Li ₂ C ₂	-15.60 ¹³	-16.77

Table S1. ReaxFF parameter optimization: experimental and ReaxFF heat of formation (kcal/mol) for various crystalline phases.

References

- 1. A. C. T. van Duin, S. Dasgupta, F. Lorant, W. A. Goddard, ReaxFF: A Reactive Force Field for Hydrocarbons. *J. Phys. Chem. A* **2001**, *105*, 9396–9409.
- 2. K. Chenoweth, A. C. T. van Duin, W. A. Goddard, ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation. *J. Phys. Chem. A.* **2008**, *112*, 1040–1053.
- M. M. Islam, A. Ostadhossein, O. Borodin, A. T. Yeates, W. W. Tipton, R. G. Hennig, N. Kumar, A. C. T. van Duin, ReaxFF Molecular Dynamics Simulations on Lithiated Sulfur Cathode Materials. *Phys. Chem. Chem. Phys.* 2015, *17*, 3383–3393.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Broth- ers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc. Wallingford CT, 2009.
- B. V. Merinov, S. V. Zybin, S. Naserifar, S. Morozov, J. Oppenheim, W. A. Goddard, J. Lee, J. H. Lee, H. E. Han, Y. C. Choi, S. H. Kim, Interface Structure in Li-Metal/[Pyr14][TFSI]-Ionic Liquid System from ab Initio Molecular Dynamics Simulations. *J. Phys. Chem. Lett.* 2019, 10, 4577–4586.
- M. Y. Yang, B. V. Merinov, S. V. Zybin, W. A. Goddard III, E. K. Mok, H. J. Hah, H. E. Han, Y. C. Choi, S. H. Kim, (2022). Transport Properties of Imidazolium Based Ionic Liquid Electrolytes from Molecular Dynamics Simulations. *Electrochem. Sci. Adv.* 2022, 2, e2100007.
- 7. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. **1995**, *117*, 1–19.

- 8. A. K. Rappe, W. A. Goddard, Charge Equilibration for Molecular Dynamics Simulations. *J. Phys. Chem.* **1991**, *95*, 3358–3363.
- 9. W. Humphrey, A. Dalke, K. Schulten, VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38.
- H. Tokuda, K. Hayamizu, K. Ishii, Md. A. B. H. Susan, M. Watanabe, Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in Imidazolium Cation. J. Phys. Chem. B. 2005, 109, 6103–6110.
- 11. W. M. Haynes, Ed., *CRC Handbook of Chemistry and Physics*, CRC Press, Boca Raton, FL, ed. 95, **2015**.
- 12. M. Asano, K. Kubo, H. Kimura, Free Energy of Formation for Solid Lithium Nitride. *J. Nucl. Sci. Technol.* **1982**, *19*, 78–79.
- D. A. Katskov, B. V. L'vov, V. I. Danilkin, Determination of the Standard Heat of Formation of Lithium Carbide Li₂C₂ by the Atomic-absorption Spectroscopy Method. *J. Appl. Spectrosc.* **1977**, *27*, 1313–1317.

ReaxFF reactive force field parameters for the Li-metal and [TFSI][BMIM] ionic liquid system:

Reactive MD-force field: C/O/H/F/Li/S/N force field; 39 ! Number of general parameters

		n(hog1)	Ovor	acordinat	ion naram	otor		
-		p(boc1)	Over	coordinat	ion param	eter		
-	9.5409 !]	p(DOC2)	Valo		.1011 param	eter ion norom	stor	
4	20.5405 !]	p(COaz)	vale.	ncy angle	e conjugat.	ion parame	eter	
	1.5105 !]	p(tr1p4)	Trip	le bond s	tabilizat.	ion parame	eter	
_	6.6630 !]	p(trip3)	Trip	le bond s	tabilizat	ion parame	eter	
	/0.0000 !]	kc2	C2-C	orrection	L .			
	1.0588 !]	p(ovun6)	Unde	rcoordina	tion para	meter		
	4.6000 !j	p(trip2)	Trip	le bond s	tabilizat	ion parame	eter	
1	12.1176 !j	p(ovun7)	Unde	rcoordina	tion para	meter		
1	13.3056 !]	p(ovun8)	Unde	rcoordina	tion para	meter		
-1	10 . 1292 !]	p(tripl)	Trip	le bond s	tabilizat	ion parame	eter	
	0.0000 !	(swa)	Lowe	r Taper-r	adius			
1	10.0000 !	(swb)	Uppe	r Taper-r	adius			
	0.0000 !	p(fel)	Fe d	imer ⁻ corr	ection			
3		p(val6)	Vale	ncv under	coordinat	ion		
	6.0891 !	p(lp1)	Vale	ncv angle	/lone pai	r paramete	er	
	1.0563	p(val9)	Vale	ncy angle	naramete	r purumeet		
	2 038/ 1	p(val)	Vale	ncy angle	parameter	r		
	6 1/21	p(vario)	Vaie.	imor corr	ogtion	L		
	6 0200 1	p(rez)	re u	la bord/a		motor		
	0.9290	p(penz)	Doub	le bond/a	ngle para			
	0.3989 !]	p(pen3)	Doub	le bond/a	ingle para	meter: ove	ercoord	
	3.9954 !]	p(pen4)	Doub	ie bond/a	ingle para	meter: ove	ercoord	
	0.0000 !]	p(fe3)	Fe d	imer corr	ection			
	5.7796 !j	p(tor2)	Tors	ion/BO pa	rameter			
1	10.0000 !]	p(tor3)	Tors	ion overc	oordinati	on		
	1.9487 !j	p(tor4)	Tors	ion overc	oordinati	on		
	0.0000 !]	p(elho)	eRea	xFF				
	2.1645 !]	p(cot2)	Conj	ugation				
	1.5591 !]	p(vdW1)	vdW	shielding	ſ			
	0.1000 !		Cutof	f for bor	nd order (*100)		
	2.1365 !]	p(coa4)	Vale	ncy angle	conjugat:	ion parame	eter	
	0.6991 !	p(ovun4)	Over	coordinat	ion param	eter		
5	50.0000 !i	o(ovun3)	Over	coordinat	ion param	eter		
	1.8512 !	p(val8)	Vale	ncv/lone	pair para	meter		
	0.0000 !	not used	1420		Parr Para			
	0.0000	not used						
	0.0000	not used						
	0 0000 1	not used						
	2 6962 1	n(coa3)	Valo	nov angle	conjugat	ion naram	otor	
11	2.0502 .j	of atoms.	atomTD.ro	(gioma).	Val•atom	mage • Pudu	• Dij• gamma	-
тт	• 111 0	olfa.gamma	$(\mathbf{w}) \cdot \mathbf{V}_{2}$	nglo).n(, DI J, Ganuna otoFFM•n J	, ,
	-	alla; yannia ro(nini)	a(w);vai(a	ingre);p(c	$5vuns); n \cdot u$	·; CHILEEM;	etabem; II.	1.
	-	ro(prpr);F	(1p2); nea		(10004));p(b0c3)	;p(b0c5),1	1.u.;11.u.
~	1 2025	p(ovunz);	(Val3); II.	u.;val(b)	pc);p(vals);n.u.;n.	u.;n.u.	4 0000
C	1.3825	4.0000	12.0000	1.9133	0.1853	0.9000	1.1359	4.0000
	9.7602	2.1346	4.0000	33.2433	/9.5548	5.86/8	/.0000	0.0000
	1.2306	0.0000	199.0303	8.6991	34.7289	13.3894	0.8563	0.0000
	-2.8983	2.5000	1.0564	4.0000	2.9663	0.0000	0.0000	0.0000
Н	0.7853	1.0000	1.0080	1.5904	0.0419	1.0206	-0.1000	1.0000
	9.3557	5.0518	1.0000	0.0000	121.1250	5.3200	7.4366	1.0000
	-0.1000	0.0000	54.5000	1.9771	3.3517	0.7571	1.0698	0.0000
	-15.7683	2.1488	1.0338	1.0000	2.8793	0.0000	0.0000	0.0000
0	1.2477	2.0000	15.9990	1.9236	0.0904	1.0503	1.0863	6.0000
	10.2127	7.7719	4.0000	36.9573	116.0768	8.5000	8.9989	2.0000
	0.9088	1.0003	60.8726	20.4140	3.3754	0.2702	0.9745	0.0000
	-3.6141	2.7025	1.0493	4.0000	2.9225	0.0000	0.0000	0.0000
S	1,9186	2,0000	32,0600	1,6516	0.4937	0.7530	1.6593	6.0000
2	9.0227	4.9055	4.0000	30,0000	112 1416	6 5745	9,0000	2.0000
	1 0000	3 1001	4.0000	12 0000	22 1070	15 2020	0 07/5	2.0000
	15 7262	J.4774 2 0002	1 0000	6 2000	22.13/0	13.3230	0.0000	0.0000
Ma	-13.1303	2.00UZ	1.0338 T.0338	U.2998	2.0/93 0 2/12		0.0000	6 0000
мо	2.4095	0.03/5	33.9400	1.04/1	0.3413		0.1000	0.0000
	13.1958	44.8826	4.0000		0.0000	0./695	0.06//	0.0000
	0.1000	0.0000	152.6300	3.4529	0.0722	3.1767	0.8563	0.0000
	-17.9815	3.1072	1.0338	8.0000	3.4590	0.0000	0.0000	0.0000

Ni		1.8201	2	.0000) 5	8.69	00	1.	.944	9	0.	188	0	0.	8218	6	0.10	00	2.	0000	C
	12	2.1594	3	.8387	7	2.00	00	0	.000	0	0.	000	0	4.	8038	; '	7.38	52	0.	0000	0
	- 3	1.0000	0	.0000) 9	5.63	00 5	50.	.678	6	0.	676	2	0.	0981	. (0.85	63	0.	0000	0
	-3	3.7733	3	.6035	5	1.03	38	8	.000	0	2.	579	1	Ο.	0000) (0.00	00	0.	0000	3
Li		1.9814	1	.0000)	6.94	10	1.	.800	0	0.	293	9	0.	9387	' _(0.10	00	1.	000	0
	9	9.0616	1	.3258	3	1.000	00	0	.000	0	0.	000	0 –	з.	0000	1	0.02	41	0.	0000	0
	-:	1.0000	0	.0000) 3	7.500	00	5.	.440	9	6.	910	7	Ο.	1973		0.85	63	0.	0000	0
	-2	2.5068	2	.2989)	1.03	38	1.	.000	0	2.	810	3	1.	3000) (0.20	00 1	3.	0000	0
в	-	1.5530	3	.0000) 1	0.81	10	1	.651	2	0.	100	0	0.	9480) .	1.00	00	3.	0000	0
_	1 (0.3025	2	.3647	, –	3.00	00	0	.703	6	80.	000	0	4.	0000	, .	7.00	0.0	0.	0000	0
		1.3000	0	.0000	. 15	1.370	00	7	.606	9	1.	932	4	1.	0943		0.00	00	0.	0000	0
		3,1611	4	.0000) 13)	1.05	64	3	000	0	2	841	3	ō.	0000			00	0.	0000) N
F		1 1620	1	.0000	,) 1	8 99	0-1 0/1	1	556	2	0	121	3	0.	5000		0.00	00	7	0000	0
г	1 (1.1020	7	.0000) I	1 000	04	о Т	• J J U	2	0.	200	0	0.	0000	. –			/·	0000	0
	10	J. 2712	2	. 3000	, . 1	1.000		9 . c	.200	3 1	4	200	0	9. 1	0000	, i			0.	0000	0
	-;	7 2000	3	.4290	- 1	1 04		0	.982	с Т	4.	1/9	9 r	т. О	0201				0.	0000)
-	-	1.3000	2	.0050) \	1.04	93	4.	.000	0	2.	922	2	0.	0000		1.00	00	0.	0000	J
Р		1.5994	3	.0000) 3	0.97.	38	T.	./00	0	0.	1/4	3	1.	0000) .	1.30	00	5.	0000	J
	-	9.1909	14	.9482	2	5.000	00	0.	.000	0	0.	000	0	1.	8000		/.09	46	0.	0000)
		1.0000	25	.0000)	1.500	00	0.	.218	7	21.	430	5 1	5.	1425		0.00	00	0.	0000)
	-:	3.9294	3	.4831	L	1.03	38	5	.000	0	2.	879	3	0.	0000) (0.00	00	0.	0000)
Ν	-	1.6157	3	.0000) 1	4.00	00	1.	.937	6	0.	120	3	1.	0000)	1.25	58	5.	0000	3
	9	9.4267	26	.8500)	4.000	00	8	.629	4 1	00.	000	0	7.	6099	, .	7.75	00	2.	0000	3
		1.0439	0	.1000) 11	9.983	37	1.	.764	0	2.	740	9	2.	3814	. (0.97	45	0.	0000)
	- (5.5798	4	.4843	3	1.018	83	4	.000	0	2.	879	3	0.	0000) (0.00	00	0.	0000)
51		! Nr	of	bond	ls;	at1;	at2;I	De	(sig	ma)	;De	(pi);De	e (p	oipi)	;p(]	bel)	;p(b			
					p(be2)	;p(bo	53);p(]	bo4);n	.u.	;p(b	$\dot{0}$);p(bo2)				
1	1	156.646	53	99.9	9144	80	.0715	5	-0.	802	8	-0.	4648	;	1.0	000	´37	.6741	L	0.4	4292
		0.429	91	-0.1	1024	9	.2608	3	1.	000	0	-0.	0500)	6.8	233	1	.0000)	0.0	0000
1	2	170.23	16	0.0	0000	0	.0000)	-0.	593	1	0.	0000		1.0	000	6	.0000)	0.	7140
		5.226	57	1.0	0000	0	.0000)	1.	000	0	-0.	0500		6.8	315	0	.0000)	0.0	0000
2	2	156.09	73	0.0	0000	0	.0000)	-0.	137	7	0.	0000		1.0	000	6	.0000)	0.1	8240
_	_	2,990		1.0	0000	0	.0000)	1.	000	0	-0.	0593		4.8	358	0	.0000)	0.0	0000
1	З	146.403	38	154.0	9131	61	1630))	_0	970	4	_0	0842	,	1.0	000	11	0135	;	0	1548
-	5	2.342	27	_0.2	649	6	513	7	1	000	n N	_0.	1868		6.1	410	1	.0000	ý	0.0	0000
З	З	60 14	- / /	176 6	5202	51	1430	'n	_0	280	2	_0	1244		1 0	000	29	6430	ý	0.0	9000 9114
5	5	0 24/	11	1	230	7	6/8	, 7	-0.	000	0	-0.	1302		6.2	010	2)	0000	,)	0.0	0000
2	2	100 /24	±⊥ 73	-0.1	0000	0	040	/ ``	1.	000	0 1	-0.	0000		1 0	000	6	.0000	, \	0.0	5511
2	5	1 240	20	1 0		0	.0000	, ,	-0.	007	± 0	0.	0000		I.U		0	.0000	,	0	1014
1	4	210 010	90 51	70	1000	55	2520	ן ר	1.	200	2	-0.	0007 E011		1 0	451	10	0617	,	0.0	5000
T	4	210.910	- 0	/0.3	012/	14	.2520	⊃ ₄	-0.	290	5	-0.	1261		1.0	2222	10	. 901		0.1	2220
~		2.19:	58	-0.1	1912	14	.0034	ŧ	1.		0	-0.	1201		4.8		1 C	.0000)	0.0	1000
2	4	183.158	32	0.0	0000	0	.0000)	-0.	/54	4	0.	0000		1.0	0000	6	.0000)	0	3/25
		11./30	56	1.0	0000	0	.0000)	1.	000	0	-0.	0595)	4.6	1//	0	.0000)	0.0	1000
4	4	84.376	55	31.1	563	0	.0000)	-0.	861	0	-0.	4781		1.0	0000	17	.8574	ł	0	3198
_	_	0.494	12	-0.1	L//3	8	.412	2	1.	000	0	-0.	0889		6.8	515	1	.0000)	0.0	0000
1	5	0.535	56	0.9	9614	0	.0000)	0.	381	7	-0.	3000		1.0	000	36	.0000)	0.2	2142
		0.611	16	-0.2	2579	6	.1366	5	1.	000	0	-0.	0913		6.6	800	1	.0000)	0.0	0000
2	5	101.000	00	0.0	0000	0	.0000)	-0.	501	9	-0.	3000		0.0	000	36	.0000)	0.3	3712
		0.070)5	-0.3	3027	15	.0243	3	1.	000	0	-0.	0950		6.5	090	0	.0000)	0.0	0000
3	5	108.986	58	10.5	5806	137	.5564	1	0.	886	1	-0.	2172		1.0	000	19	.1047	7	1.2	2087
		0.952	10	-0.1	831	7	.2198	3	1.	000	0	-0.	1266		6.0	906	1	.0000)	0.0	0000
4	5	82.510	07	27.2	2572	137	.6546	5	1.	000	0	-0.	2304		1.0	000	19	.1688	3	0.4	4660
		1.015	51	-0.1	1596	7	.8950)	1.	000	0	-0.	0909)	5.5	509	1	.0000)	0.0	0000
5	5	51.823	35	0.0	0000	0	.0000)	0.	827	1	-0.	3000)	0.0	000	16	.0000)	0.2	2670
		0.224	18	-0.3	3000	16	.0000)	1.	000	0	-0.	1908	;	7.3	978	0	.0000)	0.0	0000
3	4	184.886	56	217.1	1354	0	.0000)	0.	176	9	-0.	2406		1.0	000	22	.1005	5	0.	1418
-		0.900	91	-0.2	2751	8	434	7	1.	000	0	-0.	1424		6.7	434	1	.0000)	0.0	0000
1	6	83.58	10	9.0	383	0	.0000	,)	0.	253	1	-0.	2000		1.0	000	16	. 0000)	0.0	0529
-	0	1 409	25	_0 1	113	13	3000	, n	1	000	n n	_0	1/36		1 5	683	1	0000	,)	0.0	0000
2	6	114 754	56	0.1	0000	10	.0000	, ,	_0	805	9	ñ.	0000		1 0	000	4	. 0000	,)	0.0	1256
2	0	0 10	50	1 0	0000	0	0000	ń	-0.	000	0	0.	1104		т. г.		0	0000	, N	0.	0000
r	e	105 200	10	1.0	0000	0	.0000	ר ר	1.		c c	-0.	7720		1 0	0000	1 0	.0000	,	0.0	1070
3	0	LUD.30.	נס גר			1 -	.0000	ן ר	-U.	043	0	-0.	2000		T.(1000	10	.0000	, ``	0.	10/0
~	~	0./19	73 20	-0.2	2000	12	.0000	J	1.		0	-0.	0000		5./	103	1	.0000	,	0.0	1000
6	6	91.222	2U - 1	0.0	1000	0	.0000	J	-0.	233	ช 0	-0.	2000		0.0	0000	10	.0000	,	0.2	2088
-	-	1.46	D⊥	-0.2	2000	15	.0000	J	1.	000	0	-0.	1435	,	4.3	908	0	.0000	J	0.0	1000
5	6	56.53	79	0.0	0000	0	.0000)	-0.	324	1	-0.	2000		0.0	000	16	.0000)	0.	1607

		2.6232	-0.2000	15.0000	1.0000	-0.1790	4.4051	0.0000	0.0000
4	6	79.7256	0.0000	0.0000	0.3100	-0.2000	0.0000	16.0000	0.1466
	_	0.7435	-0.2500	25.0000	1.0000	-0.0929	5.3027	0.0000	0.0000
1	7	45.7211	-0.0200	0.0000	0.6313	-0.5000	0.0000	35.0000	0.1810
_	_	0.8439	-0.2500	11.9965	1.0000	-0.0522	4.3603	0.0000	0.0000
2	1	36.3483	0.0000	0.0000	-0.9999	0.0000	0.0000	6.0000	0.4500
~	_	2.0000	0.0000	12.0000	1.0000	-0.0697	5.0219	0.0000	0.0000
3	/	9/.9383	0.0000	0.0000	-0.3/51	0.3000	0.0000	6.0000	0.4328
4	-	1.3021	-0.2500	11.9965	1.0000	-0.0592	5.42/5	0.0000	0.0000
4	/	0 4455	0.0000	20.0000	-0.4648	-0.5000	0.0000 5.4446	25.0000	0.2776
7	7	3/ 315/	-0.2300	20.0000	1.0000	-0.1820	0 0000	26 0000	0.0000
'	'	0 5752	0.0000	12 0000	1 0000	_0 1382	4 5000	20.0000	0.0000
1	R	180 3526	50 0000	0 0000	-0.1860	-0.4591	1 0000	37 7369	0.2590
-	0	0.2807	-0.2047	10.2887	1,0000	-0.0641	5.9561	1.0000	0.0000
2	8	165.3660	0.0000	0.0000	-0.2658	-0.3000	1,0000	25.0000	0.3019
-	0	6.1522	0.0000	0.0000	1.0000	-0.0933	5.4815	1.0000	0.0000
3	8	236.5417	65.2243	0.0000	-0.4987	-0.2500	1.0000	25.0000	1.0000
		0.9994	-0.2342	17.4842	1.0000	-0.1262	5.8863	1.0000	0.0000
4	8	0.0000	0.0000	0.0000	0.9000	-0.2500	1.0000	25.0000	0.5201
		1.0000	-0.1488	10.0786	1.0000	-0.1647	6.3839	1.0000	0.0000
8	8	85.8601	0.0000	0.0000	1.0000	-0.2500	1.0000	25.0000	0.7894
		0.8860	-0.2000	25.0000	1.0000	-0.0820	8.6292	1.0000	0.0000
1	9	185.5699	0.0000	0.0000	-0.6826	-0.5000	1.0000	35.0000	0.8994
		4.7452	-0.2500	15.0000	1.0000	-0.1214	4.1366	1.0000	0.0000
2	9	265.0555	0.0000	0.0000	-0.6839	-0.2000	0.0000	16.0000	0.4242
		49.7545	-0.2000	15.0000	1.0000	-0.0758	6.0344	0.0000	0.0000
3	9	112.9341	0.0000	0.0000	-0.4700	-0.5000	1.0000	45.0000	0.5656
	•	1.4209	-0.2500	15.0000	1.0000	-0.0406	5.5704	1.0000	0.0000
4	9	208.5/9/	0.0000	0.0000	-0.94//	-0.5000	1.0000	45.0000	1.143/
7	0	1.45/9	-0.2500	15.0000	1.0000	-0.1925	4.8604	1.0000	0.0000
/	9	3 4000	0.0000	15 0000	-0.5542	-0.3000	4 3125	45.0000	0.2773
8	9	150 6978	0.0000	0 0000	0 1373	-0.0780	1 0000	13 1260	0.0000
0	,	0.2867	-0.1310	10.7257	1.0000	-0.1182	6.8737	1.0000	0.0000
9	9	75.6988	100.5231	0.0000	0.8760	-0.3500	1,0000	25.0000	1,5575
-	2	0.0200	-0.2500	15.0000	1.0000	-0.1183	5.1151	1.0000	0.0000
1	10	0.0000	0.0000	0.0000	0.2500	-0.5000	1.0000	45.0000	0.6000
		0.4000	-0.2500	15.0000	1.0000	-0.1000	10.0000	1.0000	0.0000
2	10	0.0000	0.0000	0.0000	0.2500	-0.5000	1.0000	45.0000	0.6000
		0.4000	-0.2500	15.0000	1.0000	-0.1000	10.0000	1.0000	0.0000
3	10	0.0000	0.0000	0.0000	0.2500	-0.5000	1.0000	45.0000	0.6000
		0.4000	-0.2500	15.0000	1.0000	-0.1000	10.0000	1.0000	0.0000
7	10	0.0000	0.0000	0.0000	0.2500	-0.5000	1.0000	45.0000	0.6000
		0.4000	-0.2500	15.0000	1.0000	-0.1000	10.0000	1.0000	0.0000
9	10	153.5200	0.0000	0.0000	0.3010	-0.5000	1.0000	50.0000	0.1025
1.0	1.0	0.4150	-0.5000	15.0000	1.0000	-0.0723	5.3872	1.0000	0.0000
10	10	0.0000	0.0000	0.0000	0.2500	-0.5000	1.0000	45.0000	0.6000
1	1 1	0.4000	-0.2500	122 2050	1.0000	-0.1000	1 0000	1.0000	0.0000
T	ΤT	230.6480	83.4300	132.3859	-0./25/	-0.2/09	1.0000	29.9009	0.82/5
2	11	161 1063	-0.3400	7.9813	-0.1387	-0.1020	1 0000	6 0000	0.0000
2	11	0 6127	1 0000	0.0000	1 0000	_0 0395	7 2218	0.0000	0.7270
3	11	85.9770	90.1220	0.0000	-0.1794	-0.4462	1.0000	34.9336	0.2655
Ű		2.1655	-0.2173	7.0137	1.0000	-0.2489	4,7873	1.0000	0.0000
4	11	83.8728	158,4962	10.6453	0.5906	-0.2136	1.0000	42.7701	0.3124
-		1.2522	-0.3679	5.1968	1.0000	-0.1670	4.3060	1.0000	0.0000
7	11	59.9489	0.0000	0.0000	-0.8676	-0.5000	0.0000	25.0000	0.3001
		0.5172	-0.2500	20.0000	1.0000	-0.1067	4.4438	0.0000	0.0000
9	11	219.0435	0.0000	0.0000	-0.7851	-0.5000	1.0000	45.0000	0.4632
		4.7945	-0.2500	15.0000	1.0000	-0.1655	4.9080	1.0000	0.0000
11	11	134.6492	66.2329	149.2707	-0.7228	-0.1000	1.0000	19.0850	1.0000
		0.6060	-0.2050	9.7308	1.0000	-0.1791	5.8008	1.0000	0.0000
36		! Nr of d	off-diagor	hal terms.	<pre>at1;at2;</pre>	Dij;RvdW;	alfa;ro(s	sigma);r	
1	2	0.1219	1.4000	9.8442	1.1203	-1.0000	-1.0000		

2	3	C	.034	44	1.68	00	10.	324	7	0.9	901	3	-1	.00	00	-1	.000	00			
1	3	C	.174	45	1.65	42	10.	423	1	1.3	318	4	1	.14	01	1	.119	91			
1	4	C	.36	56	1.61	19	10.	720	7	1.6	579	0	1	.36	35	-1	.000	00			
2	4	C	.10	17	1.77	55	9.	608	8	1.3	369	6	-1	.00	00	-1	.000	00			
1	5	C	0.149	95	2.07	94	12.	237	6	0.0	010	0	1	.40	50	-1	.000	00			
2	5	C	.130	61	1.58	75	11.	987	5	1.4	490	0	-1	.00	00	-1	.000	00			
3	5	C	.202	11	2.03	77	10.	464	6	1.6	502	5	1	.47	35	1	.65	95			
4	5	C	.21	61	1.87	29	9.	906	9	2.0)89	6	1	.68	48	-1	.000	00			
3	4	C	.182	22	1.83	09	11.	430	4	1.4	494	3	1	.29	07	-1	.000	00			
1	6	C	.08	00	1.70	85	10.	089	5	1.5	550	4	1	.40	05	-1	.000	00			
2	6	C	0.030	66	1.73	06	11.	101	9	1.2	227	0	-1	.00	00	-1	.000	00			
3	6	C	.050	00	1.80	00	11.	613	9	1.4	465	2	-1	.00	00	-1	.000	00			
4	6	C	.16	64	1.70	78	11.	861	0	1.7	769	2	-1	.00	00	-1	.000	00			
5	6	C	.318	88	2.03	91	11.	120	8	2.3	370	3	-1	.00	00	-1	.000	00			
1	7	C	.11	17	1.67	62	12.	457	9	1.6	594	4	1	.00	00	1	.000	00			
2	7	C	.11	65	1.57	61	10.	668	4	1.4	175	9	-1	.00	00	-1	.000	00			
3	7	C	.358	85	1.44	16	10.	842	4	1.5	553	5	1	.00	00	1	.000	00			
4	7	C).22!	52	2.15	33	10.	374	4	2.1	103	8	-1	.00	00	-1	.000	00			
1	8	C	0.09	56	1.70	10	11.	743	6	1.3	300	3	1	.18	39	-1	.000	00			
2	8	C	0.04	72	1.42	36	11.	888	7	1.1	133	3	-1	.00	00	-1	.000	00			
3	8	C	.090	07	2.31	92	9.	857	9	1.3	310	3	1	.26	29	-1	.000	00			
4	8	C	.10	00	2.00	00	10.	000	0 -	1.0	000	0	-1	.00	00	-1	.000	00			
1	9	C	0.05	56	1.67	39	11.	057	8	1.2	242	7	-1	.00	00	-1	.000	00			
2	9	C	0.07	52	1.96	06	9.	994	8	1.0)33	1	-1	.00	00	-1	.000	00			
3	9	C	0.10	55	1.73	90	10.	277	0	1.2	212	6	-1	.00	00	-1	.000	00			
4	9	C	.340	09	1.69	30	10.	630	1	1.4	493	6	-1	.00	00	-1	.000	00			
7	9	C	.16	64	1.98	08	9.	710	7	1.6	558	7	-1	.00	00	-1	.000	00			
8	9	C	.083	30	1.74	19	10.	864	1	1.3	359	2	-1	.00	00	-1	.000	00			
9	10	C	.12	11	1.75	75	9.	665	3	1.3	355	5	-1	.00	00	-1	.000	00			
1	11	C	.114	47	1.64	75	10.	484	0	1.5	544	1	1	.08	39	1	.02	16			
2	11	C	0.048	80	2.30	00	9.	005	0	1.0	015	6	-1	.00	00	-1	.000	00			
3	11	C	0.05	57	1.98	04	10.	140	4	1.2	250	3	1	.11	70	1	.012	25			
4	11	C).242	13	1.74	61	9.	935	7	1.5	593	4	1	.46	58	1	.022	20			
7	11	C	.172	26	1.50	73	9.	470	2	1.5	517	4	-1	.00	00	-1	.000	00			
9	11	C	.16	58	1.74	58	10.	517	6	1.4	424	6	-1	.00	00	-1	.000	00			
132	!	. Nr	c of	angl	es.	at1;	at2	2;at	3;Th	eta	ao,	o;p	v(va	al1);p	(va	12)	;p(c	oa1);	
3	4	3	62	.5000	9	.961	9	3.	2919		-1.	036	5	0	.45	16	0	.000	0	1.	3077
1	4	3	75	.1000	16	.478	0	5.	0545		0.	000	0	0	.72	50	0	.000	0	1.	0384
4	1	9	70	.1233	23	.463	6	4.	9273		0.	000	0	3	.30	34	0	.000	0	3.	3671
9	1	9	75	.1477	27	.443	3	4.	9794		0.	000	0	3	.42	69	0	.000	0	3.	2642
3	4	11	65	.9219	42	.819	4	4.	5719		0.	000	0	2	.24	24	0	.000	0	1.	6980
4	11	4	58	.7095	26	.320	8	1.	0000		0.	000	0	1	.07	64	0	.000	0	3.	3900
7	1	7	71	.1401	7	.437	0	3.	8886		0.	000	0	2	.56	12	0	.000	0	1.	1416
7	3	7	95	.7136	2	.237	5	4.	0707		0.	000	0	2	.74	28	0	.000	0	2.	1527
7	4	7	110	.0000	2	.810	0	4.	1060		0.	000	0	1	.57	51	0	.000	0	1.	7554
7	9	7	92	.0257	1	.307	6	2.	5528		0.	000	0	2	.36	97	0	.000	0	1.	0624
7	11	7	60	.9696	2	.070	6	3.	5501		0.	000	0	2	.33	88	0	.000	0	1.	1372
1	1	1	67	.2326	22	.069	5	1.	6286		0.	000	0	1	.79	59	15	.414	1	1.	8089
1	1	3	49	.5561	7	.377	1	4.	9568		0.	000	0	0	.75	33	15	.990	6	1.	0010
3	1	3	124	.0171	37	.694	5	2.	5635	-2	24.	390	2	1	.86	46	-42	.975	8	2.	0610
1	3	1	74	.3994	44	.750	0	0.	7982		0.	000	0	3	.00	00	0	.000	0	1.	0528
1	3	3	119	.0854	37	.647	8	2.	0268		0.	000	0	0	.80	37	67	.026	4	2.	9826
3	3	3	80	.7324	30	.455	4	0.	9953		0.	000	0	1	.63	10	50	.000	0	1.	0783
3	3	4	150	.2283	45	.000	0	5.	9341		0.	000	0	2	.78	93	0	.000	0	1.	0782
3	4	4	65	.0000	45	.840	1	2.	9557		0.	000	0	2	.09	52	0	.000	0	1.	0323
1	1	4	68	.9986	31	.405	7	4.	8471		0.	146	3	0	.10	76	0	.000	0	2.	5166
1	4	1	30	.7500	4	.500	0	7.	0000		0.	146	3	1	.44	52	0	.000	0	2.	8788
1	4	4	84	.4685	5	.210	3	6.	6033		0.	146	3	0	.09	05	0	.000	0	2.	9037
4	4	4	70	.3671	5	.718	0	7.	0000		0.	000	0	0	.36	83	0	.000	0	2.	4869
1	1	2	65	.2527	14	.318	5	6.	2977		0.	000	0	0	.56	45	0	.000	0	1.	1530
2	1	2	70	.0840	25	.354	0	3.	4508		0.	000	0	0	.00	50	0	.000	0	3.	0000
1	2	2	0	.0000	0	.000	0	6.	0000		0.	000	0	0	.00	00	0	.000	0	1.	0400
1	2	1	0	.0000	3	.411	0	7.	7350		0.	000	0	0	.00	00	0	.000	0	1.	0400
2	2	2	0	.0000	27	.921	3	5.	8635		0.	000	0	0	.00	00	0	.000	0	1.	0400
2	1	3	65	.0000	14	.205	7	4.	8649		0.	000	0	0	. 35	04	0	. 000	0	1.	7185

-	~	~	51 5010	01 5060			0 5106		1 1 5 6 6
T	3	2	/1.5018	21./062	0.4/35	0.0000	0.5186	0.0000	1.1/93
2	3	3	84.9468	23.3540	1.5057	0.0000	2.6374	0.0000	1.3023
2	3	2	77.0645	10,4737	1,2895	0.0000	0.9924	0.0000	1,1043
1	2	2	0 0000	25 0000	2 0000	0 0000	1 0000	0 0000	1 0400
T	2	2	0.0000	25.0000	3.0000	0.0000	1.0000	0.0000	1.0400
3	2	3	0.0000	0.0148	6.0000	0.0000	0.0000	0.0000	1.0400
2	2	3	0.0000	9.7025	6.0000	0.0000	0.0000	0.0000	1.0400
1	2	4	0.0000	0.0019	6,0000	0.0000	0.0000	0.0000	1.0400
2	1	-	20 0106	11 2010	0 5525	0 0000	0 0050	0 0000	1 0267
2	1	4	30.9190	11.3010	0.000	0.0000	0.0050	0.0000	1.9207
T	4	2	100.0000	14.2598	4.2424	0.0000	0.0050	0.0000	3.0000
2	4	2	92.1229	42.8350	0.6163	0.0000	1.0235	0.0000	1.0010
2	4	4	70.9476	9,9024	0.6923	0.0000	0.2031	0.0000	2,9811
2	3	5	88 3222	7 1767	$2 \sqrt{7} \sqrt{7}$	0 0000	0 6219	0 0000	3 1507
2	5	5	00.3222	7.1707	2.4/4/	0.0000	0.0219	0.0000	3.1307
2	4	5	90.0000	20.3126	0.7222	0.0000	0.6873	0.0000	2.2146
2	5	5	57.6230	6.3083	5.0722	0.0000	0.6873	0.0000	1.5510
2	5	4	54.6337	8.6317	6.9912	0.0000	1.6873	0.0000	2.8674
2	5	2	76 2492	11 20/1	7 6230	0 0000	0 0375	0 0000	1 0596
2	2	2	/0.2402	11.2041	1.5705	0.0000	0.9373	0.0000	1.0500
2	3	4	45.6/42	13.4413	1.5/25	0.0000	0.//3/	0.0000	2.6616
4	2	4	0.0000	7.5000	2.0000	0.0000	0.0000	0.0000	1.0400
4	2	5	0.0000	7.5000	2.0000	0.0000	0.0000	0.0000	1.0400
5	2	5	0 0000	7 5000	2 0000	0 0000	0 0000	0 0000	1 0/00
5	2	2	70.0000	10.000	2.0000	0.0000	1 0000	0.0000	1.0400
2	5	3	/0.0000	12.0000	4.0000	0.0000	1.0000	0.0000	1.2500
3	2	5	0.0000	15.0000	2.0000	0.0000	0.0000	0.0000	1.0500
2	1	9	85.4658	0.0100	1.9807	0.0000	1.4400	0.0000	2.9068
2	1	11	62 2465	35 / 859	2 16/18	0 0000	0 0110	0 0000	2 1112
2	2	11	02.2405	22.4023	2.1040	0.0000	0.0110	0.0000	2.4442
2	3	ΤT	81.0695	20.0000	2.0285	0.0000	0.1218	0.0000	1.44//
1	11	2	76.9847	49.2262	0.9407	0.0000	0.0300	0.0000	2.6196
2	11	3	85.4080	40.0000	1.7549	0.0000	0.0222	0.0000	1.0774
2	11	11	83 5658	40 0000	1 3540	0 0000	0 0222	0 0000	2 6397
2	11		50.0007	1 1000	2 0770	0.0000	0.0222	0.0000	1 0000
Z	ΤT	2	58.038/	1.1802	3.9770	0.0000	0.0222	0.0000	1.0000
3	5	3	80.0647	49.0226	1.1861	0.7271	0.1000	0.0000	1.5321
5	3	5	16.5418	38.3796	0.5347	0.0000	0.1000	0.0000	2.3535
3	3	5	34 0844	11.5602	1.5428	0.0000	0.4319	0.0000	1.0500
2	5	5	C 0005	0.0202	0 1000	0.0000	0.1112	0.0000	1 7575
3	5	2	0.0985	0.0302	0.1000	0.0000	0.0142	0.0000	1./5/5
1	3	5	76.5850	8.7797	0.8099	0.0000	2.5889	0.0000	1.0500
4	5	4	66.1778	17.0744	4.2862	0.0984	1.4056	0.0000	1.7545
5	4	5	35,4696	10.5159	5,6990	0.0000	3,9985	0.0000	1.3642
1	1	5	90 0000	32 0246	1 1603	0 0000	3 9500	0 0000	1 2617
4	4	5	90.0000	52.0240	1.1005	0.0000	3.9500	0.0000	1.3017
4	5	5	41.9144	0.5409	7.1700	0.0000	3.4295	0.0000	3.2326
3	5	4	75.0000	25.0000	2.0000	0.0984	1.0000	0.0000	1.5000
4	3	5	35.0000	12.5000	1.5000	0.0000	0.5000	0.0000	1.0500
2	1	5	90 0000	30 0000	1 2500	0 0000	3 0000	0 0000	1 3000
1	-	1		16 6000	1.2500	0.0000	0.0000	0.0000	1 0711
T	0	T	62.5000	10.0000	0./981	0.0000	0.9630	0.0000	1.0/11
1	1	6	87.6241	12.6504	1.8145	0.0000	0.6154	0.0000	1.5298
6	1	6	100.0000	40.4895	1.6455	0.0000	0.0100	0.0000	1.7667
1	6	6	5,0994	3,1824	0.7016	0.0000	0.7465	0.0000	2.2665
2	ć	Š	20 00/7	27 2047	2 5700	0 0000	0 1070	0 0000	2 4145
2	0	2	20.904/	2/.304/	2.5790	0.0000	0.1078	0.0000	2.4145
3	3	6	90.0000	39.185/	4.8200	0.0000	0.906/	0.0000	1.9533
6	3	6	51.5671	2.9451	0.6657	0.0000	1.6341	0.0000	1.9057
3	6	6	56.7026	3.2665	4.3063	0.0000	0.6729	0.0000	2.7490
2	6	2	106 3969	30 0000	0 9614	0 0000	1 966/	0 0000	2 2603
2	0	2	100.3909	30.0000	0.9014	0.0000	1.9004	0.0000	2.2095
2	2	6	0.0000	26.332/	4.686/	0.0000	0.81//	0.0000	1.0404
6	2	6	0.0000	60.0000	1.8471	0.0000	0.6331	0.0000	1.8931
2	6	6	30.3748	1.0000	4.8528	0.0000	0.1019	0.0000	3.1660
2	6	6	180,0000	-27.2489	8.3752	0.0000	0.8112	0.0000	1.0004
1	ć	Š	07 5740	10 0272	2 5200	0.0000	1 0550	0.0000	1 0000
Ţ	0	2	51.5/42	10.33/3	2.5200	0.0000	T.0000	0.0000	1.0000
1	2	6	0.0000	0.2811	1.1741	0.0000	0.9136	0.0000	3.8138
2	1	6	84.0006	45.0000	0.6271	0.0000	3.0000	0.0000	1.0000
2	3	6	28.4774	12.0885	3.2396	0.5000	0.0778	0.0000	1.6733
1	6	2	70 0000	25 0000	1 0000	0 0000	1 0000	0 0000	1 2500
1	0	ر ر	70.0000	23.0000	1 0000	0.0000	1 0000	0.0000	1 2500
T	3	6	/0.0000	25.0000	T.0000	0.0000	T.0000	0.0000	1.2500
3	1	6	70.0000	25.0000	1.0000	0.0000	1.0000	0.0000	1.2500
3	2	6	0.0000	1.0000	1.3402	0.5000	0.0500	0.0000	1.5379
Δ	6	Δ	2 7962	7 1073	0.5589	0.0000	0.0554	0.0000	1,1473
ć	1	-		76 07/E	0 0100	0 0000	0 0100	0 0000	1 1600
0	4	0	72.7745	20.0345	0.9189	0.0000	0.0100	0.0000	1.4083
4	6	6	48.7356	9.9227	0.1206	0.0000	0.0893	0.0000	1.1108

4	4	6	64.	522	23	7.	256	2	5.2	298	3	0.	000	0	Ο.	545	9	0.	000	0	1.04	400		
2	4	6	83.	493	37	16.	760	5	0.8	242	2	0.	500	0	ο.	540	9	0.	000	0	1.13	378		
4	2	6	0.	000	00	10.	000	0	1.0	000)	0.	500	0	ο.	250	0	0.	000	0	1.50	000		
5	4	6	61.	826	53	20.	869	6	0.2	450)	0.	000	0	ο.	742	9	0.	000	0	1.04	400		
4	5	6	60.	000	00	1.	000	0	1.0	000)	0.	000	0	1.	000	0	0.	000	0	1.2	500		
4	6	5	60.	000	0	1.	000	Õ	1.0	000)	0.	000	0 0	1.	000	0	0.	000	0	1.2	500		
5	3	6	44	910	16	2	794	ñ	0.5	834	1	0.	000	0	ō.	959	7	0.	000	0	1.3	151		
3	5	6	 60	000	0	1	000	0	1 0	00-	r)	0.	000	0	1	000	, 0	0.	000	0	1 2	500		
3	6	5	60	000	0	1	000	0	1 0	000	,)	0.	000	0	1 •	000	0	0.	000	0	1 2	500		
2	0	2	50.	000	0	1. 26	000	5	1 7	215	;	0.	000	0	т. ^	10/	0	0.	000	0	1 0	100		
2	0	2	50.	250	0	20.	500	ິ າ	1.1	210))	0.	000	0	0.	104	0	0.	000	0	2 1	±00 140		
2	0 2	0	55.	200	0	30. 10	327	2	0.0	000) \	0.	000	0	0.	420	л Т	0.	000	0	2.1.	149		
2	2	8	75	000	10	10.	400	1	0.1	000	,	0.		0	1.	000	0 C	0.	000	0	2.00) U U 2 7 5		
2	3	8	/5.	9/4	16 20	10.	952	3	0.8	68	/	0.	000	0	1.	825	6	0.	000	0	2.98	3/5		
2	8	3	65.	000	00	40.	000	0	6.0	000)	0.	000	0	0.	100	0	0.	000	0	3.00	000		
3	8	3	50.	494	± /	12.	109	5	3.5	926	2	0.	000	0	3.	000	0	35.	000	0	1.04	100		
8	3	8	90.	000	00	40.	000	0	4.7	885	5	0.	000	0	2.	714	6	0.	000	0	1.04	100		
3	2	8	52.	016	52	2.	526	7	0.3	146	0	0.	000	0	2.	207	0	0.	000	0	2.9	111		
3	3	8	90.	000	00	27.	749	2	6.0	000)	0.	000	0	0.	187	0	0.	000	0	1.04	400		
8	2	8	0.	500	00	3.	440	5	0.9	580)	0.	000	0	0.	803	1	0.	000	0	1.00	000		
8	8	8	60.	938	36	12.	903	3	7.8	607	7	0.	000	0	1.	751	5	0.	000	0	2.24	405		
3	8	8	70.	722	24	5.	364	4	3.4	424	ł	0.	000	0	0.	821	9	0.	000	0	2.80	000		
1	1	8	30.	049	91	23.	974	9	3.2	341	L	0.	000	0	1.	000	0	0.	000	0	1.00	000		
1	8	1	80.	655	55	40.	000	0	5.6	273	3	0.	000	0	1.	000	0	0.	000	0	3.70	089		
1	8	8	70.	521	17	39.	311	8	7.9	958	3	0.	000	0	1.	000	0	0.	000	0	1.00	000		
8	1	8	47.	062	26	4.	559	0	5.6	859)	0.	000	0	1.	000	0	0.	000	0	1.40	585		
1	8	3	75.	000	00	30.	000	0	2.0	000)	0.	000	0	1.	000	0	0.	000	0	2.00	000		
1	8	2	65.	000	00	35.	000	0	4.0	000)	0.	000	0	ο.	500	0	0.	000	0	2.00	000		
9	8	9	65.	038	36	28.	826	3	2.2	480)	0.	000	0	1.	102	1	0.	000	0	1.04	400		
8	9	9	70.	000	00	28.	735	3	1.2	918	3	0.	000	0	1.	091	3	0.	000	0	1.04	400		
8	8	9	70.	000	0	25.	000	0	2.5	000)	0.	000	0 0	1.	000	0	0.	000	0	1.04	400		
9	10	9	92.	735	58	25.	000	Õ	2.5	000))	0.	000	0 0	1.	135	5	0.	000	0	1.1	514		
1	1	11	77	492	23	42	721	8 8	4.3	622	, ,	0.	000	n	3	207	7	50.	000	0	2.70	926		
11	1	11	7/	860	10	52	687	0	2 0	022	- \	0.	000	0	з. З	376	0) 0	000	0	3 01	20		
1	11	1	,	260) ()) 1	JZ. 17	007	0	1 0	61))	0.	000	0	۰ ۱	0/0	6	0.	000	0	1 1	161		
1	11	⊥ 11	74	200) T	4/. 10	551	2	1.0	660	<u>.</u>	0.	000	0	0. 2	110	4	50. 50	000	0	1 10	101 101		
⊥ 11	4 1 1	11	/4.	000		40.	001	2	0.9	6 2 5	, -	0.	000	0	۰ د م	413	4	٠ u u	000	0	1 0	100		
11	ΤT	11	120	000		27.	921	5	5.0	032))	0.		0	0.	407	7	- U . - O	000	0	1 5/	100		
T	4	7	130.	89.		8.	000	0	0.9	020	5	0.		0	ა. ე	497	7		000	0	1.50	J70 270		
4	T	,	130.	89.	30 	8.	665	0	6.9	828	5	4.	000	0	3. 	49/	/	50. 1.	000	0	1.50	J70		
1/1	-	1 1	vr oi		orsi	ons	5. a	t1;a	τΖ;	at	s;at	4;	; V I	; V Z ;	۷3	;b(tor	1); ^	p(c	OTI)	; n	~ ~		
1	1	1	1	-0.	.2//	5	10.	1210		0.2	2025		-4.	6886		-2.	130	9	0.	0000	(0.0	000	
1	1	1	3	-0.	./09	8	22.	2951		0.0	1060		-2.	5000		-2.	168	8	0.	0000	(0.0	000	
3	1	1	3	-0.	.052	8	6.	8150		0.	498		-5.	0913		-1.	000	0	0.	0000	(0.0	000	
1	1	3	T	2.	.000	/	25.	5641	-	0.0	1608		-2.	6456		-1.	1/6	6	0.	0000	(0.0	000	
1	1	3	3	-0.	.01/	9	5.	0603	-	0.1	1894		-2.	5000		-2.	039	9	0.	0000	(0.0	000	
3	1	3	1	-2	.500	0	76.	0427	-	0.0)141		-3.	/586		-2.	900	0	0.	0000	(0.0	000	
3	1	3	3	-2	.500	0	66.	3525		0.2	3986		-3.	0293		-3.	000	0	0.	0000	(0.0	000	
1	3	3	1	2.	.500	0	-0.	5332		1.0	0000		-3.	5096		-2.	900	0	0.	0000	(0.0	000	
1	3	3	3	0.	.053	1 -	17.	3983		1.0	0000		-2.	5000		-2.	158	4	0.	0000	(0.0	000	
3	3	3	3	-2	.500	0 –	25.	0000		1.(0000		-2.	5000		-1.	000	0	0.	0000	(0.0	000	
0	1	1	0	-0.	.009	8	51.	9046		0.2	2435		-4.	5500		-1.	972	1	0.	0000	(0.0	000	
0	3	3	0	0	.561	1	25.	0350		1.0	0000		-5.	3564		-0.	991	8	0.	0000	(0.0	000	
4	4	4	4	1.	.839	7 –	10.	0688	-	0.4	1387		-2.	4875		-0.	025	8	0.	0000	(0.0	000	
3	4	4	4	0.	.250	0	90.	0000		0.5	5000		-6.	0000		0.	000	0	0.	0000	(0.0	000	
3	4	4	3	0.	.224	7	90.	0000		0.6	5100		-6.	0339		0.	032	0	0.	0000	(0.0	000	
1	4	4	1	0	.049	0	49.	6276		0.0)785		-7.	5561		0.	012	8	0.	0000	(0.0	000	
4	4	4	7	0	.000	0	2.	0000		0.0	0100		-9.	0000		0.	000	0	0.	0000	(0.0	000	
7	4	4	7	0	.026	3	22.	1907		0.0	085		-5.	3761		-0.	015	3	Ο.	0000	(0.0	000	
1	1	1	9	0	.001	6	19.	4325	_	0.2	2470		_4.	3189		-1.	897	6	0.	0000	(0.0	000	
9	1	1	9	0	.010	0	37.	2385		0.5	5751		-5.	1000		-1.	974	б	0.	0000	(0.0	000	
1	1	3	7	0	.010	0	49.	0000		0.2	2500		-3.	8312		-0-	097	1	0.	0000	(0.0	000	
3	1	3	7	-0.	.004	9	48.	3830		0.2	2500		-3.	9625		-0.	020	1	0.	0000	í	0.0	000	
0	1	11	0	-0	.770	5	47.	5626		0.7	7704		_4.	3365		-3.	000	0	0.	0000	í	0.0	000	
3	1	11	1	ñ	.000	0	90	0000	_	0.2	2000		-2.	5000		-2	000	0	0	0000	í	0.0	000	
3	4	11	4	1	941	6	39	7453	_	1.0	0000		-6.	4779		-2	238	6	0	0000	Ì	0.0	000	
1	4	11	4	1	808	1	39	5170		.0 0	9868		_6	6438		_2	283	6	0	0000	Ì	ົ່	000	
-	-		4	÷ •		-		5115	_				5.			2.		-		5000	,			

1	4	11	7	1.8670	39.7586	-0.9292	-6.5627	-2.4025	0.0000	0.0000
9	1	4	11	-0.3544	85.7240	0.3880	-3.1316	-0.1007	0.0000	0.0000
9	1	4	3	-0.2837	86.3003	0.4231	-2.6099	-0.1107	0.0000	0.0000
0	4	11	0	2.0000	90.0000	-0.7545	-9.1181	-2.0510	0.0000	0.0000
1	1	1	2	-0.2500	31.2596	0.1709	-4.6391	-1.9002	0.0000	0.0000
2	1	1	2	-0.1770	30.0252	0.4340	-5.0019	-2.0697	0.0000	0.0000
2	1	1	3	-0.3568	22.6472	0.6045	-4.0088	-1.0000	0.0000	0.0000
1	1	3	2	-1.1953	42.1545	-1.0000	-8.0821	-1.0000	0.0000	0.0000
2	1	3	1	-0.9284	34.3952	0.7285	-2.5440	-2.4641	0.0000	0.0000
2	1	3	2	-2.5000	79.6980	1.0000	-3.5697	-2.7501	0.0000	0.0000
2	1	3	3	-0.5583	80.0000	1.0000	-4.4000	-3.0000	0.0000	0.0000
3	1	3	2	0.0345	78.9586	-0.6810	-4.1777	-3.0000	0.0000	0.0000
1	3	3	2	-2.5000	3.3219	0.7180	-5.2021	-2.9330	0.0000	0.0000
2	3	3	2	2.2500	-6.2288	1.0000	-2.6189	-1.0000	0.0000	0.0000
2	3	3	3	0.4723	-12.4144	-1.0000	-2.5000	-1.0000	0.0000	0.0000
3	3	3	3	-2.5000	-25.0000	1.0000	-2.5000	-1.0000	0.0000	0.0000
0	1	2	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0	2	2	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0	2	3	0	0.0000	0.1000	0.0200	-2.5415	0.0000	0.0000	0.0000
0	2	4	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	1	3	5	2.1344	29.9850	0.3398	-3.1459	-2.1000	0.0000	0.0000
1	1	3	5	0.4573	10.0000	1.0000	-7.3632	-2.1000	0.0000	0.0000
2	3	5	3	0.3709	10.0000	0.9625	-9.0000	-1.0000	0.0000	0.0000
2	3	4	3	2.5000	2.5000	0.2237	-10.0000	0.0000	0.0000	0.0000
1	4	4	2	0.0000	50.0000	0.0000	-8.0000	0.0000	0.0000	0.0000
2	4	4	2	0.0000	50.0000	0.0000	-8.0000	0.0000	0.0000	0.0000
1	1	1	6	0.0000	5.0000	0.4000	-6.0000	0.0000	0.0000	0.0000
6	1	1	6	0.0000	44.3024	0.4000	-4.0000	0.0000	0.0000	0.0000
2	1	1	6	0.0000	21.7038	0.0100	-4.0000	0.0000	0.0000	0.0000
2	1	6	1	0.0000	5.2500	0.0100	-6.0000	0.0000	0.0000	0.0000
1	1	6	1	0.0000	5.1676	0.0100	-5.9539	0.0000	0.0000	0.0000
1	1	6	2	0.0000	5.1676	0.0100	-5.9539	0.0000	0.0000	0.0000
6	3	3	6	0.0509	30,0000	0.5000	-4.0000	0.0000	0.0000	0.0000
0	8	8	Õ	0.0000	42.3911	-0.3192	-4.3105	0.0000	0.0000	0.0000
0	3 3	8	Õ	-2.0000	48.7726	-0.5000	-2.5000	0.0000	0.0000	0.0000
8	3	3	Ř	2.0000	75.0000	0.3000	-5.0000	0.0000	0.0000	0.0000
0	1	8	Ő	0.0000	30.0000	-0.1000	-5.0000	0.0000	0.0000	0.0000
1	1	1	Ř	0.0000	2.0000	0.0000	-6.0000	0.0000	0.0000	0.0000
8	1	1	8	0.0000	2.0000	0.0000	-6.0000	0.0000	0.0000	0.0000
2	1	3	7	0.0000	50.0000	0.2000	-4.0000	0.0000	0.0000	0.0000
1	11	1	2	-0.4607	73.2745	0.8057	-6.5581	-2.7334	0.0000	0.0000
11	1	1	2	-0.2828	45.1749	0.1156	-6.2783	-2.5478	0.0000	0.0000
1	1	1	11	-0.5541	76.7989	0.7541	-8.0269	-1.9959	0.0000	0.0000
1	1	11	1	-0.4431	75,1291	-0.7926	-1.6886	-2.8003	0.0000	0.0000
11	1	11	1	-2.2533	83.2815	-0.4856	-7.9986	-1.0007	0.0000	0.0000
7	-	11	Jr o	f hydrog	en bonds.	at1.at2.	at3.r(hb).	$n(hb1) \cdot n(l)$	$hb2) \cdot n(hb3)$	0.0000
3	2	3	1	- 9682 -	4.4628	1.7976	3.0000	P(1101)/P(1	102),p(105	
3	2	4	2	5000 -	1.0000	1.7976	3.0000			
4	2	3	2	.5000 -	1.0000	1.7976	3.0000			
4	2	4	1	.5000 -	2.0000	1.7976	3.0000			
3	2	11	2	.0000 -	2.5000	1.7976	3.0000			
11	2		2	.0000 -	2.5000	1.7976	3.0000			
11	2	11	2	.0000 -	2.5000	1.7976	3.0000			
		-	_							

<pre>Atom section (by o r0(sigma); Val; atom mass; Rvdw; Dij; gamma; r0(pi); Val(e); alfa; gamma(w); Val(angle);</pre>	rder) Sigma bond covalent radius Valency Atomic mass van der Waals radius van der Waals dissociation energy EEM shielding Pi bond covalent radius Number of valence electrons van der Waals parameter van der Waals shielding Valency for 1,3-B0 correction
<pre>p(ovun5); n.u.; chiEEM; etaEEM;</pre>	Undercoordination energy EEM electronegativity EEM hardness
<pre>n.u. r0(pipi); p(lp2); Heat increment; p(boc4); p(boc3); p(boc5), n.u.;</pre>	Double pi bond covalent radius Lone pair energy Atomic heat of formation Bond order correction Bond order correction Bond order correction
<pre>n.u.; p(ovun2); p(val3); n.u.; Val(boc); p(val5); n.u.; n.u.;</pre>	Valence angle parameter Valence angle parameter Number of lone pairs Valence angle parameter
n.u.;	
<pre>Bond section (by o De(sigma); De(pi); De(pipi); p(be1); p(bo5); 13corr; p(bo6); p(ovun1); p(be2); p(bo3); p(bo4); n.u.; p(bo1); p(bo2); n.u.; n.u.;</pre>	rder) Sigma bond dissociation energy Pi bond dissociation energy Double pi bond dissociation energy Bond energy parameter Double pi bond order parameter 1,3-B0 correction Double pi bond order parameter Overcoordination penalty Bond energy parameter Pi bond order parameter Pi bond order parameter Sigma bond order parameter Sigma bond order parameter
Off-diagonal secti Dij; RvdW; alfa:	on (by order) vdW energy vdW radius vdW parameter
r0(sigma); r0(pi); r0(pipi);	Sigma bond length Pi bond length Double pi bond length
<pre>Angle section (by Dij; Thetao,o; p(val1); p(val2);</pre>	order) vdW energy 180 — (equilibrium angle) Valence angle parameter Valence angle parameter

p(coal);	Valence conjugation
p(val7);	Undercoordination
p(pen1);	Penalty energy
p(val4);	Valence angle parameter

Torsion section (by order)

V1;	V1 torsion barrier
V2;	V2 torsion barrier
V3;	V3 torsion barrier
p(tor1);	Torsion angle parameter
p(cot1);	Conjugation energy
n.u.;	
n.u.;	

Hydrogen bond section (by order)

r(hb);	Hydrogen	bond	equilibrium	distance
p(hb1);	Hydrogen	bond	energy	
p(hb2);	Hydrogen	bond/	bond order	
p(hb3);	Hydrogen	bond	parameter	