/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Kurt Smith (U Pittsburgh) ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Modified by Stephen Weitzner (Penn State). Force calculations adapted to reflect gaussian well potential discussed in: J. Magee & F. Siperstein "Formation of Ordered Mesoporous Materials Under Slow Aggregation Conditions" J. Phys. Chem. C 2009 113 (5), 1680-1685. ------------------------------------------------------------------------- */ #include "math.h" #include "stdio.h" #include "stdlib.h" #include "pair_dpd_mod.h" // SW #include "atom.h" #include "atom_vec.h" #include "comm.h" #include "update.h" #include "force.h" #include "neighbor.h" #include "neigh_list.h" #include "random_mars.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; #define EPSILON 1.0e-10 /* ---------------------------------------------------------------------- */ PairDPDmod::PairDPDmod(LAMMPS *lmp) : Pair(lmp) // SW { random = NULL; } /* ---------------------------------------------------------------------- */ PairDPDmod::~PairDPDmod() // SW { if (allocated) { memory->destroy(setflag); memory->destroy(cutsq); memory->destroy(cut); memory->destroy(a0); memory->destroy(gamma); memory->destroy(sigma); memory->destroy(well_width); // SW memory->destroy(well_center); // SW memory->destroy(well_depth); // SW } if (random) delete random; } /* ---------------------------------------------------------------------- */ void PairDPDmod::compute(int eflag, int vflag) // SW { int i,j,ii,jj,inum,jnum,itype,jtype; double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair; double vxtmp,vytmp,vztmp,delvx,delvy,delvz; double rsq,r,rinv,dot,wd,randnum,factor_dpd,bp,widthsq; // SW int *ilist,*jlist,*numneigh,**firstneigh; evdwl = 0.0; if (eflag || vflag) ev_setup(eflag,vflag); else evflag = vflag_fdotr = 0; double **x = atom->x; double **v = atom->v; double **f = atom->f; int *type = atom->type; int nlocal = atom->nlocal; double *special_lj = force->special_lj; int newton_pair = force->newton_pair; double dtinvsqrt = 1.0/sqrt(update->dt); inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // loop over neighbors of my atoms for (ii = 0; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; vxtmp = v[i][0]; vytmp = v[i][1]; vztmp = v[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_dpd = special_lj[sbmask(j)]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; jtype = type[j]; if (rsq < cutsq[itype][jtype]) { r = sqrt(rsq); if (r < EPSILON) continue; // r can be 0.0 in DPD systems rinv = 1.0/r; delvx = vxtmp - v[j][0]; delvy = vytmp - v[j][1]; delvz = vztmp - v[j][2]; dot = delx*delvx + dely*delvy + delz*delvz; wd = 1.0 - r/cut[itype][jtype]; bp = r - well_center[itype][jtype]; // SW added line widthsq = pow(well_width[itype][jtype],2); // SW added line randnum = random->gaussian(); // conservative force = a0 * wd // drag force = -gamma * wd^2 * (delx dot delv) / r // random force = sigma * wd * rnd * dtinvsqrt; fpair = a0[itype][jtype]*wd; /*---------------------------------------------------- SW: The next update to fpair establishes the gaussian well component of the conservative force. ------------------------------------------------------*/ fpair -= (2*well_depth[itype][jtype]*bp/widthsq)*exp(-1*pow(bp,2)/widthsq); // SW fpair -= gamma[itype][jtype]*wd*wd*dot*rinv; fpair += sigma[itype][jtype]*wd*randnum*dtinvsqrt; fpair *= factor_dpd*rinv; f[i][0] += delx*fpair; f[i][1] += dely*fpair; f[i][2] += delz*fpair; if (newton_pair || j < nlocal) { f[j][0] -= delx*fpair; f[j][1] -= dely*fpair; f[j][2] -= delz*fpair; } if (eflag) { // unshifted eng of conservative term: // evdwl = -a0[itype][jtype]*r * (1.0-0.5*r/cut[itype][jtype]); // eng shifted to 0.0 at cutoff evdwl = 0.5*a0[itype][jtype]*cut[itype][jtype] * wd*wd; evdwl *= factor_dpd; } if (evflag) ev_tally(i,j,nlocal,newton_pair, evdwl,0.0,fpair,delx,dely,delz); } } } if (vflag_fdotr) virial_fdotr_compute(); } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairDPDmod::allocate() // SW { allocated = 1; int n = atom->ntypes; memory->create(setflag,n+1,n+1,"pair:setflag"); for (int i = 1; i <= n; i++) for (int j = i; j <= n; j++) setflag[i][j] = 0; memory->create(cutsq,n+1,n+1,"pair:cutsq"); memory->create(cut,n+1,n+1,"pair:cut"); memory->create(a0,n+1,n+1,"pair:a0"); memory->create(gamma,n+1,n+1,"pair:gamma"); memory->create(sigma,n+1,n+1,"pair:sigma"); memory->create(well_width,n+1,n+1,"pair:well_width"); // SW memory->create(well_center,n+1,n+1,"pair:well_center"); // SW memory->create(well_depth,n+1,n+1,"pair:well_depth"); // SW } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairDPDmod::settings(int narg, char **arg) // SW { if (narg != 3) error->all(FLERR,"Illegal pair_style command"); temperature = force->numeric(arg[0]); cut_global = force->numeric(arg[1]); seed = force->inumeric(arg[2]); // initialize Marsaglia RNG with processor-unique seed if (seed <= 0) error->all(FLERR,"Illegal pair_style command"); delete random; random = new RanMars(lmp,seed + comm->me); // reset cutoffs that have been explicitly set if (allocated) { int i,j; for (i = 1; i <= atom->ntypes; i++) for (j = i+1; j <= atom->ntypes; j++) if (setflag[i][j]) cut[i][j] = cut_global; } } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void PairDPDmod::coeff(int narg, char **arg) // SW { if (narg < 4 || narg > 8) error->all(FLERR,"Incorrect args for pair coefficients"); // SW 8 replaced 5 if (!allocated) allocate(); int ilo,ihi,jlo,jhi; force->bounds(arg[0],atom->ntypes,ilo,ihi); force->bounds(arg[1],atom->ntypes,jlo,jhi); double a0_one = force->numeric(arg[2]); double gamma_one = force->numeric(arg[3]); double cut_one = force->numeric(arg[4]); // SW now cut-off MUST be defined double well_width_one = force->numeric(arg[5]); // SW double well_center_one = force->numeric(arg[6]); // SW double well_depth_one = force->numeric(arg[7]); // SW int count = 0; for (int i = ilo; i <= ihi; i++) { for (int j = MAX(jlo,i); j <= jhi; j++) { a0[i][j] = a0_one; gamma[i][j] = gamma_one; cut[i][j] = cut_one; well_width[i][j] = well_width_one; // SW well_center[i][j] = well_center_one; // SW well_depth[i][j] = well_depth_one; // SW setflag[i][j] = 1; count++; } } if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients"); } /* ---------------------------------------------------------------------- init specific to this pair style ------------------------------------------------------------------------- */ void PairDPDmod::init_style() // SW { if (comm->ghost_velocity == 0) error->all(FLERR,"Pair dpd requires ghost atoms store velocity"); // if newton off, forces between atoms ij will be double computed // using different random numbers if (force->newton_pair == 0 && comm->me == 0) error->warning(FLERR, "Pair dpd needs newton pair on for momentum conservation"); neighbor->request(this); } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairDPDmod::init_one(int i, int j) // SW { if (setflag[i][j] == 0) error->all(FLERR,"All pair coeffs are not set"); sigma[i][j] = sqrt(2.0*force->boltz*temperature*gamma[i][j]); cut[j][i] = cut[i][j]; a0[j][i] = a0[i][j]; gamma[j][i] = gamma[i][j]; sigma[j][i] = sigma[i][j]; well_width[j][i] = well_width[i][j]; // SW well_center[j][i] = well_center[i][j]; // SW well_depth[j][i] = well_depth[i][j]; // SW return cut[i][j]; } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairDPDmod::write_restart(FILE *fp) // SW { write_restart_settings(fp); int i,j; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { fwrite(&setflag[i][j],sizeof(int),1,fp); if (setflag[i][j]) { fwrite(&a0[i][j],sizeof(double),1,fp); fwrite(&gamma[i][j],sizeof(double),1,fp); fwrite(&cut[i][j],sizeof(double),1,fp); fwrite(&well_width[i][j],sizeof(double),1,fp); // SW fwrite(&well_center[i][j],sizeof(double),1,fp); // SW fwrite(&well_depth[i][j],sizeof(double),1,fp); // SW } } } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairDPDmod::read_restart(FILE *fp) // SW { read_restart_settings(fp); allocate(); int i,j; int me = comm->me; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { if (me == 0) fread(&setflag[i][j],sizeof(int),1,fp); MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world); if (setflag[i][j]) { if (me == 0) { fread(&a0[i][j],sizeof(double),1,fp); fread(&gamma[i][j],sizeof(double),1,fp); fread(&cut[i][j],sizeof(double),1,fp); fread(&well_width[i][j],sizeof(double),1,fp); // SW fread(&well_center[i][j],sizeof(double),1,fp); // SW fread(&well_depth[i][j],sizeof(double),1,fp); // SW } MPI_Bcast(&a0[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&gamma[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&cut[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&well_width[i][j],1,MPI_DOUBLE,0,world); // SW MPI_Bcast(&well_center[i][j],1,MPI_DOUBLE,0,world); // SW MPI_Bcast(&well_depth[i][j],1,MPI_DOUBLE,0,world); // SW } } } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairDPDmod::write_restart_settings(FILE *fp) // SW { fwrite(&temperature,sizeof(double),1,fp); fwrite(&cut_global,sizeof(double),1,fp); fwrite(&seed,sizeof(int),1,fp); fwrite(&mix_flag,sizeof(int),1,fp); } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairDPDmod::read_restart_settings(FILE *fp) // SW { if (comm->me == 0) { fread(&temperature,sizeof(double),1,fp); fread(&cut_global,sizeof(double),1,fp); fread(&seed,sizeof(int),1,fp); fread(&mix_flag,sizeof(int),1,fp); } MPI_Bcast(&temperature,1,MPI_DOUBLE,0,world); MPI_Bcast(&cut_global,1,MPI_DOUBLE,0,world); MPI_Bcast(&seed,1,MPI_INT,0,world); MPI_Bcast(&mix_flag,1,MPI_INT,0,world); // initialize Marsaglia RNG with processor-unique seed // same seed that pair_style command initially specified if (random) delete random; random = new RanMars(lmp,seed + comm->me); } /* ---------------------------------------------------------------------- */ //http://lammps.sandia.gov/doc/compute_pair_local.html //+ It looks like this member fxn is only called when compute pair/local //+ is used double PairDPDmod::single(int i, int j, int itype, int jtype, double rsq, double factor_coul, double factor_dpd, double &fforce) // SW { double r,rinv,wd,phi; r = sqrt(rsq); if (r < EPSILON) { fforce = 0.0; return 0.0; } rinv = 1.0/r; wd = 1.0 - r/cut[itype][jtype]; fforce = a0[itype][jtype]*wd * factor_dpd*rinv; // SW what is this? phi = 0.5*a0[itype][jtype]*cut[itype][jtype] * wd*wd; // SW what is this? return factor_dpd*phi; }