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Abstract
Radiation damage is traditionally modelled using cascade simulations, and
the effect of inelastic scattering by electrons, if included, is introduced via a
friction term in the equation of motion. We have developed a model in which
the molecular dynamics simulation is coupled to a model for the electronic
energy, which evolves via the heat diffusion equation. Energy lost by the atoms,
due electronic stopping or electron–ion interactions, is input to the electronic
system via a source term in the diffusion equation. Energy is fed back to the
atomic system from the hot electrons by means of a Langevin thermostat, which
depends on the local electronic temperature. Results of the model are presented
for 10 keV cascades in Fe.

1. Introduction

Radiation damage has traditionally been studied using cascade simulations, where the radiation
event is modelled in a molecular dynamics (MD) simulation by giving one atom a high
velocity at the start of the simulation. Such simulations have made significant contributions
to the understanding of damage evolution and residual damage following irradiation. The
technological significance of bcc Fe has led to a large number of cascade simulations on
this material using a range of interatomic potentials. The results of these have recently been
summarized by Malerba [1] along with a discussion on the sensitivity of defect clustering to
the interatomic potential. One known limitation of cascade simulations is that the effect of the
electrons is generally neglected. This is a reasonable approximation for low primary knock-on
atom (PKA) energies, but for high PKA energies a significant proportion of the energy is lost
to inelastic scattering by electrons. Including this loss is essential for accurate high-energy
simulations. For example, the SRIM2003 [2, 3] code demonstrates that a 10 keV Fe atom
moving in Fe will lose 7% of its energy to electronic scattering whereas the equivalent losses
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are 17% and 69% for 100 and 500 keV Fe atoms respectively. Thus it is apparent that, with the
high PKA energies possible on modern computational facilities, it is no longer reasonable to
neglect the effect of electronic stopping.

The effect of electron–ion interactions on MD simulations was first pointed out by Flynn
and Averback [4]. They noted that cold electrons moving through the hot thermal spike region
might, in materials with strong electron–phonon interactions, remove energy from the spike
and result in increased cooling. Finnis et al [5] included this effect in MD simulations by
means of an additional friction term and demonstrated that the strong electron–phonon coupling
constant of Ni resulted in increased residual defect concentration with respect to Cu. Caro
and Victoria [6] noted that both electronic stopping and electron–phonon coupling could be
included in MD simulations by introducing a friction term. A stochastic force was included
to represent the energy fed into the atomic system by the electrons. Stoneham [7] noted that
electrons could act as a heat sink, removing energy from the atoms, or a heat bath, returning
energy to the atoms, depending on the various timescales of the system.

To date only a limited number of simulations have included electronic effects. Zhong et al
[8] include electronic stopping by including a friction term for atoms with kinetic energies
greater than 10 eV. Bacon et al [9] investigated the effect of electron–phonon coupling on
vacancy clustering. Gao et al [10] adopted the Finnis procedure and found that increasing
electron–phonon coupling strength increased the number of stable defects. The significance
of electronic excitations has been recognized in the field of sputtering simulations where
Duvenbeck et al [11] have monitored the electronic temperature at the surface for sputtering of
Ag.

In this paper we describe a method based on the Caro and Victoria model. Electronic
stopping and electron–ion interactions are included in the MD simulations by means of a
friction term, with electronic stopping only applied at high velocities. A stochastic force
term is introduced to represent the energy fed back into the atomic system from the excited
electrons. The energy of the electronic system is described by a heat diffusion equation. At
each MD timestep, energy is exchanged with the atomic system. The net change in energy
by the atomic system is added as a source term in the heat diffusion equation and the spatial
and temporal evolution of the electronic energy is determined by numerically integrating the
thermal diffusion equation. The electronic energy is fed back into the atomic simulation via a
Langevin thermostat, where the thermostat temperature is the local electronic temperature. The
Langevin thermostat is, therefore, inhomogeneous. Under certain conditions it may be possible
for the electronic system to act as a heat bath, resulting in defect annealing.

This model has been implemented by modifying the DL POLY [12] code to couple the
MD simulations with the thermal diffusion equation. The model has been tested for 10 keV
cascades in Fe for a range of electron–phonon coupling strengths. The results of the simulations
are reported in section 5 of this paper.

2. The model

An energetic atom moving in a metal will lose a proportion of its energy to the electronic
subsystem. This energy will be transported in the material and, depending on the material
parameters, it may be fed back in to the atomic system. The aim of the current model is
to include the energy loss, the electronic energy transport and the energy feedback in MD
simulations. The energy loss is implemented, following Caro and Victoria, by including a
friction term in the equation of motion. Energy is returned to the atomic system by the
electrons via a stochastic force term. Thus the material is modelled as a system of heavy
atoms exchanging energy with a sea of light electrons, and the MD equation of motion has the
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form of a Langevin equation:

m
∂vi

∂ t
= Fi (t) − γi vi + F̃(t). (1)

Here vi and m are the velocity and mass of atom i and Fi(t) is the force acting on atom i due to
the interaction with the surrounding atoms at time t . The energy loss is included via a friction
term with coefficient γi and the energy gain from bombardment with electrons is included by
means of a stochastic force term F̃(t) with random magnitude and orientation.

It has been noted [6, 13] that the energy loss occurs via two distinct mechanisms,
depending on the velocity of the moving atom. At high velocities the gas of valence electrons
slows the atom by the mechanisms described by the stopping theory of ions in solids. In this
regime, as a result of the absence of correlations between the moving atom and the surrounding
atoms, the energy loss per unit time (dE/dt) is proportional to the kinetic energy of the moving
atom [13]. This is equivalent to the Lindhard model of electronic stopping in the low-energy
limit [14] in which the energy loss per unit distance (dE/dx) is proportional to the square
root of the kinetic energy. The energies of all current cascade simulations fall well within this
low-energy regime. At lower velocities the atomic motion is correlated and the rate of energy
loss is proportional to the difference between the atomic and the electronic temperature. Thus
we consider two contributions to the friction coefficient: γs is the friction coefficient due to
electronic stopping and γp is the friction coefficient due to electron–ion interactions. Above
some cutoff velocity v0 both electronic stopping and electron–ion interactions are included and
below this cutoff only the electron–ion interaction term is included. The magnitude of v0 is
discussed in the next section.

γi = γp + γs for vi > v0 (2)

γi = γp for vi � v0. (3)

At low atomic temperatures, when the crystal has solidified to an ordered crystal and phonons
are well defined, the electron–ion interaction is equivalent to the electron–phonon interaction.

For equilibrium systems the magnitude of the stochastic force is related to the friction
coefficient (γ ) by the fluctuation–dissipation theorem and the energy exchange drives the
atomic system to the temperature of the electronic subsystem (Te).

〈F̃(t)〉 = 0 (4)

〈F̃(t ′) · F̃(t)〉 = 2kBTeγpδ(t
′ − t). (5)

Here we assume that atoms gain energy only from the electron–ion interactions and not
from electronic stopping. Thus the stochastic force is proportional only to the electron–ion
interaction friction coefficient (γp).

In order to include energy transport by the electronic subsystem in the model we describe
the electronic temperature (Te) evolution by the heat diffusion equation, with an electronic
specific heat Ce and thermal conductivity κe.

Ce
∂Te

∂ t
= ∇(κe∇Te) − gp(Te − Ta) + gsT

′
a . (6)

The second term on the right-hand side of (6) is the standard source term from the two-
temperature model [15]. It represents energy exchange with the atomic system energy due
to the temperature difference between the atomic system (Ta) and the electronic system (Te).
gp is the coupling constant for the electron–ion interaction. The third term in (6) is a source
term included to balance the energy lost by the atomic system due to electronic stopping. The
parameter T ′

a has units of temperature, and its magnitude is determined by energy balance
considerations below. The coupling parameter gs is determined by the rate of energy loss due
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to electronic stopping. All parameters (gp, gs, Ta and T ′
a ) are related to the parameters of the

MD simulation (m, vi and γi ) using energy balance equations below.
In order to couple the MD simulations with the electronic energy, described by (6), the

simulation cell of atomic system is subdivided into a number of cubic cells, each containing
a few hundred atoms, and the electronic temperature is assumed to be constant within each
cell. These cells represent the grid for the integration of the heat diffusion equation and, apart
from small errors introduced by the numerical integration, the cell size is not expected to affect
the results of the simulation. At each MD timestep the total energy lost by the atoms in each
constant electronic temperature cell is added as a source term to the corresponding cell of
the heat diffusion equation. Equation (6) is subsequently iterated using standard numerical
techniques.

At each MD timestep, with timestep �t , the energy loss �Ui of an atom i moving with a
velocity vi , due to a friction force Fi , is given by

�Ui = Fi · vi�t = γiv
2
i �t . (7)

Therefore the total frictional energy loss (�Ul) in the (constant-temperature) cell J during the
timestep �t is given by

�Ul = �t
∑

i∈J

γiv
2
i = �t

∑

i∈J

γpv
2
i + �t

∑

i ′∈J

γsv
′2
i . (8)

Here the restricted sum (i ′) in the second term of the right-hand side is the sum over all atoms
with velocities higher than the cutoff for electronic stopping (v0). From the source terms in (6)
we find that the electronic energy gain (�Ueg) at each MD timestep is

�Ueg = gpTa�V �t + gsT
′

a�V �t . (9)

By equating the energy gain of the electronic system (�Ueg of (9)) with the energy loss of the
atomic system (�Ul of (8)), we find

∑

i∈J

γpv
2
i = gpTa�V (10)

∑

i ′∈J

γsv
′2
i = gsT

′
a �V . (11)

Thus energy balance is obtained if we define the two atomic temperatures (Ta and T ′
a ) as

3
2 kBTa = 1/N

∑

i∈J

1
2 mv2

i (12)

3
2 kBT ′

a = 1/N ′ ∑

i ′∈J

1
2 mv′2

i (13)

and the coupling constants (gp and gs) as

gp = 3NkBγp

�V m
(14)

gs = 3N ′kBγs

�V m
. (15)

In (12)–(15), N is the total number of atoms in the constant electronic temperature cell J , N ′ is
the number of atoms with v > v0 in cell J and �V is the cell volume. As before, the restricted
sum (i ′) is the sum over all atoms in cell J with velocities higher than v0.

At each timestep the atomic system gains energy �Ug due to the stochastic force, and the
magnitude of this energy, determined by stochastic calculus, is

�Ug = �t
∑

i∈J

γp3kBTe/m = �t N3kBTeγp/m. (16)
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Equating this with the energy loss by the electronic system at each timestep (the negative term
in the right-hand side of (6) (�t�V gpTe)) we again find that gp is related to γp by (14). Thus
we have a model in which energy is lost by the atomic system (and gained by the electronic
subsystem) via both electron–ion interactions and electronic stopping. However, energy is
transferred back to the atomic system from the electronic subsystem only by electron–ion
interactions.

3. Parameters

The model contains a number of parameters that are related to the material properties (Ce, κe,
γs and γp). Each of these parameters may depend on the local electronic temperature and the
local atomic temperature; however, with the exception of the specific heat, we consider them
to be constant in this version of the program. Further development is planned in which more
realistic temperature-dependent parameters will be included.

3.1. Electronic specific heat

The electronic specific heat is an important parameter in the model as it determines the
temperature rise for a given energy gain. It also influences the diffusion rate as the electronic
diffusion timescale is given by the ratio of the specific heat to the thermal conductivity. The low-
temperature specific heat is known to follow the standard Sommerfield expansion and the linear
term has been obtained accurately by both experiment and theory. At increased temperatures,
however, higher-order derivatives of the density of states become significant and the specific
heat deviates from the linear relationship. At very high temperatures the influence of the band
structure decreases and statistical models of the charge distribution are reasonably accurate. In
between these two limits the behaviour is complex and depends on the details of the density of
states. Stixrude et al [16] have calculated the electronic specific heat for close-packed Fe for
temperatures up to 8000 K using a high-temperature LAPW method, and Alfe et al [17] have
obtained similar results using DFT. Stixrude et al found that the specific heat tends to saturate at
3 kB per atom at around 8000 K and they have derived a polynomial fitting function to describe
the specific heat up to this temperature. In this work we use a function of the form

Ce = 3 tanh(2.0 × 10−4Te) kB/atom. (17)

This gives the experimental specific heat at low temperature [18] and saturates at 3 kB per atom
at high temperatures. It gives reasonable agreement with the Stixrude fit but it remains constant
at high temperatures, whereas the Stixrude fit decreases and eventually becomes negative. At
very high electronic temperatures we expect the electronic specific heat to increase further as
the core electrons are excited. The calculations of Levi et al [19] can be used to estimate a
value of 7 kB per atom at 80 000 K. However, these are in excess of the values attained in these
simulations.

3.2. Thermal conductivity

The thermal conductivity depends on the electron mean free path and as such it will depend
on both the electronic temperature and the atomic temperature. The have been a number of
methods used in the literature to describe this temperature dependence, but in this publication
we use a constant value for this parameter, corresponding to the room-temperature value.

3.3. Electronic stopping parameter

In the low-velocity regime the electronic stopping power is proportional to the ion velocity,
and the constant of proportionality (λ) is determined from either the Firsov [20] model or the

5



J. Phys.: Condens. Matter 19 (2007) 016207 D M Duffy and A M Rutherford

Lindhard and Scharff [14] model.

dE/dx = λE1/2 (18)

mdv/dt = λ(m/2)1/2v (19)

which, on comparison with (1), gives

γs = λ(m/2)1/2 (20)

and the corresponding relaxation time for electronic stopping

τs = m/γs = (2m)1/2/λ. (21)

From the stopping range tables in SRIM 2003 [3] we find a value for λ of 0.1093 eV1/2 Å
−1

,
giving a value for τs of 984 fs.

3.4. Electron–ion interaction parameter

The timescale for energy loss due to electron–ion interactions is related to the friction
coefficient by

τp = m/γp (22)

or, from (14)

τp = 3nkB/gp. (23)

Here n is defined as the number of atoms per unit volume.
In the low-temperature, ordered configuration the electron–ion coupling parameter (gp) is

the electron–phonon coupling parameter, which can be estimated from basic theoretical models.
There are, however, significant variations between the estimated parameters. Wang et al [21]
obtained a value of 144 ×1016 W m−3 K−1 for Fe based on the Allen [22] model, whereas Gao
et al [10] used the formula derived by Finnis et al [5] to find a value of 5438×1016 W m−3 K−1,
more than an order of magnitude higher. These are equivalent to relaxation timescales of
2.32 and 0.06 ps respectively. Electron–phonon coupling parameters have been estimated
from femtosecond laser experiments for noble metals and found to be of the order of 2–
10 ×1016 W m−3 K−1. Similar experiments on Ni and Cr give values of 44×1016 W m−3 K−1

and 42 × 1016 W m−3 K−1 respectively [23]. The electron–phonon coupling parameter for Fe
has not been measured but we expect the value to be similar to Cr and Ni. In the thermal
spike regime the atoms move at random and the structure is locally liquid-like; therefore, the
structure cannot support phonons. In this regime we expect the strength of the electron–ion
interactions to be different. Indeed Koponen [13] has estimated the interaction parameter to be
several orders of magnitude lower in this regime. Because of the uncertainty of this parameter
we carry out simulations for a range of electron–ion relaxation times.

3.5. Electronic stopping cutoff energy

The electronic stopping is included for atoms moving above a critical velocity as the motion
of slow atoms are strongly correlated and the atom cannot then be considered to move
independently through an electron gas. The linear relationship between stopping power and
ion velocity has been confirmed experimentally for energies down to a few tens of eVs, but
the theory has not been tested at lower energies. Zhong et al [8] have used a cutoff of 10 eV
for electronic stopping, and Zhurkin et al [24] have used a value of twice the cohesive energy.
We have chosen the latter value (8.6 eV for Fe; v0 = 54.4 Å ps−1) for the cutoff in these
simulations. At this velocity the atom will travel a distance equivalent to the range of the
interatomic potential in the time taken for the neighbouring atoms to respond to the impulse of
the moving atom (∼0.1 ps). The same value for the cutoff is used for all of our simulations.
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4. Simulation details

The DL POLY code [12] has been linked to a model for the electronic energy, the evolution
of which is described by the thermal diffusion equation. Energy is exchanged between the
MD atomistic simulation and the electronic energy after each MD timestep. A simulation
cell with 50 × 50 × 50 bcc unit cells of Fe (250 000 atoms) is used for the model and this
is subdivided into 9 × 9 × 9 constant temperature cells, each containing around 340 atoms.
The recent ‘magnetic’ interatomic potentials, developed by Dudarev and Derlet [25], are used
to describe the interactions between the Fe atoms. The 10 keV cascade was initiated in the
centre of the simulation cell and an initial 0.5 ps simulation was performed with a timestep of
0.05 fs. The timestep was then increased to 0.5 fs and the simulation extended for a further
15 ps. The heat diffusion (4) is iterated after each MD timestep and the updated electronic
temperature distribution is used for the Langevin thermostat of the MD simulation. The
electronic temperature at the boundary of the simulation cell is fixed at 300 K to represent
the electrons in the ‘rest of the system’. Thus energy is removed from the system via
electronic diffusion and the strength of the electron–phonon coupling determines the rate at
which energy is removed from the atomic system. Simulations were performed for electron–
phonon relaxation timescales (τp) ranging from 0.1 to 2.0 ps and stopping relaxation timescales
(τs) of 0.05, 0.1 and 1 ps. The electronic temperature and the atomic temperature (defined
by (10)) in each reduced cell were monitored at periodic intervals throughout the simulation.
The defect configurations were also monitored.

5. Results and discussion

The aim of these simulations was to determine the temperature evolution for the electronic
and atomic systems for a range of relaxation timescales. Snapshots of the electronic and
atomic temperatures in the central slab of the simulation cell at 0.1 and 0.5 ps are shown in
figure 1. The atomic temperatures are defined as in (10) and they are not time averaged. The
rapid decay of the electronic temperature is evident from the plots. The maximum electronic
and atomic temperatures were recorded at 100 timestep intervals and these are shown for the
first 0.3 ps of the simulation for τp equal to 1.0 ps and τs of 0.05, 0.1 and 1.0 ps in figure 2.
Note that decreasing τp corresponds to increasing the strength of the electron–ion interactions
and decreasing τs corresponds to higher electronic stopping losses. It is clear that, whilst the
electronic temperature is sensitive to τs, the atomic temperature is quite insensitive to this
parameter. Figure 3 shows the equivalent plot for τs equal to 1.0 ps and τp ranging from 0.1
to 2.0 ps. The different cooling rates for the atomic temperatures are apparent in this plot.
In all simulations the atomic temperature is higher than the electronic temperature; therefore,
electron–phonon coupling removes energy from the atomic system and the electrons act as a
heat sink. This may not, however, be the case for higher cascade energies.

A comparison was made between the cooling rates resulting from different thermostats.
Three thermostats are considered, the Nosé Hoover and the Langevin thermostats, with a
thermostat temperature of 300 K and a relaxation timescale of 1.0 ps, and the inhomogeneous
Langevin thermostat developed in this work. A constant energy (NVE) simulation was included
for comparison. The evolution of the maximum atomic temperature for each methodology is
presented in figure 4. The maximum atomic temperature saturates at around 530 K for the NVE
simulation whereas the equivalent value for both the Langevin thermostats is 340 K. Note that
the maximum temperature is the highest temperature of the reduced cells (Ta in (10)), and not
the average temperature of the whole simulation cell. The latter value fluctuates around 300 K
for the thermostatted simulations. The maximum temperature for the Nosé Hoover thermostat
shows oscillations characteristic of this type of thermostat.
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Figure 1. The electronic and atomic temperatures for the central slab of the simulation cell
(τp = 1 ps; τs = 1 ps) after a simulation time of (a) 0.1 ps and (b) 0.5 ps. The x any y coordinates
of this plot label the constant temperature subcells.
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Figure 2. The maximum electronic temperature (a) and the maximum atomic temperature (b) for
tp = 1 ps and τs = 0.05 ps (black), τs = 0.1 ps (dark grey) and τs = 1 ps (light grey).

It has been argued that, because of the non-equilibrium nature of cascade simulations,
only NVE or pseudo-NVE ensembles should be employed, as thermostats consider average
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Figure 3. The maximum electronic temperature (a) and the maximum atomic temperature (b) for
τs = 1 ps and τp = 0.1 ps (thick black), τp = 0.5 ps (black), τp = 1.0 ps (dark grey) and τp = 2.0 ps
(light grey).
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Figure 4. The maximum atomic temperature plotted against simulation time for an NVE simulation
(black line), the Nosé Hoover thermostat (dark grey), the Langevin thermostat (dotted grey) and the
inhomogeneous Langevin thermostat (light grey).

temperatures and therefore remove excessive energy from the hot thermal spike region of
the simulation [26, 27]. However, MD simulations give a poor description of the thermal
conductivity of metals, and heat transport from the cascade region by the electrons is
neglected. In materials with strong electron–phonon coupling the NVE ensemble may seriously
underestimate the cooling rate of the cascade. We argue that the Langevin thermostat provides
a mechanism for energy transfer to the electronic system, and the inhomogeneous Langevin
thermostat, introduced in this paper, ensures that the energy exchange depends on the local
electronic temperature.

The numbers of stable Frenkel defects present at the end of the simulations are summarized
in table 1. It would appear that the number of defects decreases with decreasing relaxation time.
This is unexpected, as rapid quenching (short relaxation time) is generally associated with a
higher residual defect density, and it appears to contradict earlier simulations [10] which found
that the number of residual defects increased with the strength of the electron–phonon coupling.
However, the residual defect numbers are subject to strong statistical variations and, in order
to obtain a reliable average, a number of simulations would be required for each relaxation
time. As we have carried out only one simulation for each combination of relaxation times, the
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Table 1. The number of residual Frenkel pairs at the end of the simulations for a range of relaxation
times.

τp = 1.0 ps τp = 0.5 ps τp = 0.2 ps τp = 0.1 ps

τs = 1.0 ps 30 23 24 10
τs = 0.1 ps 30 22 18 13

numbers quoted do not necessarily give a good indication of the relationship between the defect
densities and relaxation times. The focus of this publication is on the temperature evolution,
and further work will be carried out with larger simulation cells and higher PKA energies to
establish the effect on defect statistics.

6. Summary and conclusions

We have developed a methodology for including the effect of electronic stopping and electron–
ion interactions in cascade simulations of radiation damage. Energy is exchanged with
the electronic system at each MD timestep and the electronic energy evolves via the heat
diffusion equation. The electronic system returns energy to the atomic system via a Langevin
thermostat in which the temperature is the local electronic temperature. We refer to this as an
inhomogeneous Langevin thermostat.

We have implemented the methodology in the DL POLY MD code and run test simulations
for 10 keV cascades in a 250 000 atom Fe cell. We found the maximum electronic temperature
to be sensitive to the electronic stopping power, reaching a maximum of 40 000 K in one
simulation. The atomic temperature did not, however, display much sensitivity to this parameter
but, as we might expect, it does depend on the electron–phonon coupling parameter. We have
insufficient data to determine whether including electronic effects influences the residual defect
concentration; however, at these relatively low cascade energies we would not expect much
effect.

In summary, we have established that, even for relatively low cascade energies, we can
expect high electronic temperatures for the first 300 fs of the simulation. The temperature
and timescales will increase as higher cascade energies are studied. High electronic
temperatures will affect the material parameters, such as the thermal conductivity and electron–
ion interaction parameter. The variation of these parameters with electronic temperature is
currently being investigated, and this will be introduced into the next version of the program.
High electronic temperatures will also affect interatomic interactions, which would also be
expected to have a significant effect on the cascade evolution. Classical MD simulations give
a poor representation of thermal conductivity in metals and, in materials with strong electron–
ion interactions, it is necessary to include the cooling effect of the electrons. The procedure
outlined in this paper provides a method for including electronic effects into classical cascade
simulations.
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