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An algorithm, called RATTLE, for integrating the equations of motion in molecular 
dynamics calculations for molecular models with internal constraints is presented. The 

algorithm is similar to SHAKE, which is one of the standard methods for performing such 

calculations. RATTLE calculates the positions and velocities at the next time from the 
positions and velocities at the present time step, without requiring information about the 

earlier history. Like SHAKE, it is based on the Verlet algorithm and retains the simplicity of 

using Cartesian coordinates for each of the atoms to describe the configuration of a molecule 
with internal constraints. RATTLE guarantees that the coordinates and velocities of the atoms 

in a molecule satisfy the internal constraints at each time step. RATTLE has two advantages 

over SHAKE. On computers of fixed precision. it is of higher precision than SHAKE. Since it 
deals directly with the velocities, it is easier to modify RATTLE for use with the recently 

developed constant temperature and constant pressure molecular dynamics methods and with 

the nonequilibrium molecular dynamics methods that make use of resealing of the atomic 

velocities. 

I. INTRoDuCTL~N 

Various types of models have been used to perform molecular dynamics 
calculations for molecular fluids, for example, vibrating models [ 1, 21, rigid models 
(3 1, and flexible models with internal constraints [4]. Calculations for vibrating 
models are straightforward using Cartesian coordinates for each of the nuclei. For 
rigid models, either Euler angles [3 ] or quaternions [ 5 ] can be used to represent the 
rotational degrees of freedom. An alternative for rigid molecules is to use the methods 
devised by Ryckaert et al. [4], the most familiar of which is called SHAKE. SHAKE 
retains the simplicity of Cartesian coordinates and avoids many of the complications 
of Euler angles and quaternions, while incorporating the effects of the constrained 
geometry of the molecule. SHAKE can also be used for flexible molecules with 
internal constraints. 

SHAKE is based on the Verlet algorithm [6], which is also known as the explicit 
central difference method [7]. The Verlet algorithm as usually described and 
implemented has several drawbacks [7, 8). The velocities of the atoms are not among 
the variables used in integrating the equations of motion, and they can be obtained 
only with extra effort or storage. It is difficult to start the algorithm with previously 
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chosen values of the coordinates and velocities. It is difficult to change the time step 
and continue the calculation. It is easy to lose precision because quantities of very 
different magnitude are added in this algorithm [7]. 

Since the velocities are not among the variables in the algorithm, it is difficult to 
implement some recently developed molecular dynamics methods using the Verlet 
algorithm. It is a complicated matter to implement the stochastic collisions required 
for the constant temperature molecular dynamics method [9]. In the constant 
pressure molecular dynamics method [9], the equations of motion contain the 
velocities, and the Verlet algorithm is unable to solve such equations. Some of the 
techniques used in nonequilibrium molecular dynamics calculations [ IO] require 
continuous or periodic resealing of the velocities, and this is clumsy to implement 
within the Verlet algorithm. 

It is possible to incorporate the effect of impulsive stochastic collisions into the 
Verlet algorithm using the method of Stratt et al. [ 111. This requires in principle 
some loss of accuracy for those time steps in which the impulsive collisions take 
place, but in practice there is no problem with this. Van Gunsteren and Berendsen 
[ 121 have devised an algorithm for constrained dynamics in which the velocities 
appear explicitly and satisfy the constraints, but it is of the predictor-corrector type 
rather than the Verlet type. 

For atomic fluids and vibrating molecular models, the drawbacks discussed above 
can be very easily overcome by use of the “velocity” version of the Verlet algorithm 
[8]. This is merely a different formulation of the same approximate solution of the 
equations of motion, in which the velocities are explicitly calculated as part of solving 
the equations of motion. As far as we can tell, it is not possible to express SHAKE in 
an analogous way. In this paper we present a generalization of SHAKE that has the 
advantages of the velocity version of the Verlet algorithm. We call this new algorithm 
RATTLE. It can be described as a generalization of the Verlet algorithm to the case 
of molecules with internal constraints in which the velocities and positions at one 
time t are used to calculate the velocities and positions at the time t + h. At each time 
t, the values of the positions satisfy the internal constraints to within any desired 
accuracy (limited only by the precision of the calculations). In addition, the velocities 
satisfy the constraints to within any desired accuracy, unlike in SHAKE. 

II. DERIVATION OF THE ALGORITHM RATTLE 

In this section we will discuss the usual version of the Verlet algorithm and the 
difficulties associated with its use. Then we discuss the velocity version of the Verlet 
algorithm and its advantages. Next we discuss SHAKE and the reason why it can not 
be simply converted to the velocity form. Then we derive RATTLE. 

Consider a differential equation of the form 

Y@(t) =f[r], 
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where r denotes the set of Cartesian coordinates necessary to specify the 
configuration of the system. The Verlet algorithm for solving the equation is 

r(t + h) = 2r(t) - r(f - h) + Fj-[r(t)]* (2.1) 

To solve the differential equation, one starts with a value of r(0) and r(.h) and 
calculates each succeeding value of r from the two preceding values using Eq. (2.1). 
Equation (2.1) is correct except for errors of order hJ. This is the so-called local error 
[7]. When used in an iterative procedure to integrate the equations of motion for a 
finite time interval, the error in the calculated solution at the end of the finite interval 
is of order II*. This is the so-called global error. 

One problem with this procedure is that the calculation involves adding a term of 
order h* to terms of order ho. Thus only a few significant figures of the calculated 
force f[r(t)] are actually utilized, and the cumulative effect can be a significant loss 
of precision [7]. The actual magnitude of the error introduced varies with the size of 
h and the precision of the computer. Fortunately, there are simple ways to avoid this 
error that involve no additional computation. One way is discussed by Dahlquist and 
Bjorck [7]; the other is the velocity version of the Verlet algorithm to be discussed 
below [S]. 

A second problem with the usual version of the Verlet algorithm is that the 
velocities do not appear explicitly in the algorithm. This leads to difficulties in certain 
applications mentioned in the introduction. To evaluate the velocity in the Verlet 
algorithm, the following approximation can be used: 

i(t) = [ r(r + h) - r(t - h) ]/Z/l. (2.2) 

This makes an error of order h’. Thus, the velocity can be obtained from the solution 
of the Verlet algorithm, but note that the velocity at time t can be obtained only after 
the position at time t + h has been obtained. This makes it difficult to implement 
stochastic collisions for the equilibration of the temperature and impossible to use 
this method to solve differential equations, such as those arising in the constant 
pressure method, in which the accelerations depend upon the velocities as well as the 
positions. 

The velocity version of the Vet-let algorithm [ 81 eliminates these two types of 
problems. It is 

r(t + h) = r(t) + hi(f) + h’f[r(t)]/2, (2.3) 

i(f + h) = i(f) + h[f[r(f)] +f[r(f + h)]]/2. (2.4) 

The equations are equivalent to the Verlet algorithm (2.1) plus Eq. (2.2), as can most 
easily be seen by deriving (2.3) and (2.4) directly from (2.1) and (2.2) by elementary 
algebraic methods. The local error in each of these equations is of order h-‘. (One 
possible point of confusion arises in discussion of the local error of the Verlet 
algorithm. When the Verlet algorithm is expressed in its usual form, Eq. (2. l), as an 
equation for r(f + h) in terms of r(f) and r(f - h), the local error is of order hJ. 
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However, when the velocity version of the Verlet algorithm is used, as in Eqs. (2.3) 
and (2.4), the local error is of order h 3. Nevertheless, both formulations are exactly 
equivalent, and their global errors are the same, namely, of order A*.) 

Equations (2.3) and (2.4) allow one to start with values of the positions and 
velocities at time t and calculate the positions and velocities at time t + h. Iteration of 
this procedure allows an entire trajectory to be calculated. (The global error of the 
resulting trajectory is of order h*, the same as for the usual form of the Verlet 
algorithm, as must be the case since the two methods are equivalent.) This procedure 
explicitly involves the velocities, so stochastic collisions can easily be implemented. 
For example, a stochastic collision or a resealing of the velocity at time t is accom- 
plished merely by changing the velocity at time t before calculating any of the quan- 
tities for time t + h. The procedure also allows differential equations to be solved with 
greater accuracy on computers of fixed precision. The reasons for the increased 
precision is the fact that in both (2.3) and (2.4) quantities of order ho are combined 
with quantities of order h’, unlike the procedure in (2.1). The memory storage 
requirements of the two algorithms are the same, namely, 3N locations are required 
for N degrees of freedom. The velocity form of the Verlet algorithm can easily be 
generalized to the case of velocity dependent accelerations in a number of ways [ 13 ]. 

The SHAKE algorithm, introduced by Ryckaert et al. [4], is a procedure for 
integrating the equations of motion for molecules with internal constraints (e.g.. fixed 
internuclear distances or fixed bond angles) while retaining the use of Cartesian coor- 
dinates as the dynamical variables. When internal constraints are present, the 
equations of motion can be expressed as 

f(t) =f[r(t)] + g[r(t), i(t)], 

which f includes the physical forces of intermolecular and intramolecular interaction 
and g includes the forces associated with the constraints. The constraint forces g in 
general depend on all the details of the mechanical state of the system. Their 
functional form depends on the nature of the constraints. They contain time- 
dependent Lagrange multipliers. 

The Verlet algorithm for this differential equation is 

r(t + h) = 2r(t) - r(t - h) + h*[f[r(t)] + g [r(t), i(t)]]. 

A major problem associated with using this equation is that even if the exact g were 
known and used, the intramolecular constraints would eventually be violated due to 
the fact that the algorithm is not exact. Rychaert et al. [4] noticed that this problem 
could be solved by not using the exactly correct g but by using an approximation for 
g that requires that r(t + h) satisfy the constraints exactly (or to within a desired 
accuracy). An important feature of this approximation is that it makes errors of the 
same order as the local error of the Verlet algorithm. The requirements can be 
satisfied by a proper choice of the time-dependent Lagrange multipliers. Ryckaert et 
al. derived an iterative procedure for finding these unknowns in such a way that the 
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new configuration at t + h satisfies the constraints. Thus the SHAKE algorithm can 
be written as 

r(t + h) = 2r(t) - r(t - h) + hZ[f[r(t)] + g,(r)], 

where g, is the SHAKE approximation for g. 
SHAKE has the same disadvantages as those associated with the Verlet algorithm. 

It might be thought that a “velocity version” of SHAKE could eliminate these disad- 
vantages. However, such a formulation of the equations of motion for constrained 
dynamics would give 

r(t + h) = r(t) + hi(t) + h2[f[r(t)] + g[r(t), i(t)]]/Z (2.5) 

i(t + h) = i(t) + h[f[r(t)] + g[r(t), i(t)] 

+f[r(t + h)] + g [r(t + h), i(t + h)] l/2. W-9 

Suppose we know r(f) and i(t) and we want to solve these equations by iteration 
using the ideas of SHAKE to evaluate the unknown forces g. Then using (2.5) we 
could calculate r(t + h) by replacing g [r(f), i(t)] by an approximation that made 
r(t + h) satisfy the constraints. But then we cannot use (2.6) to get 3(t + h) because 
we have no way of evaluating the second g that appears in that equation. In other 
words, by (2.5), we need to know i(r) before beginning the calculation of g(f), but by 
(2.6) we need to know g(t + h) before calculating i(t + h). This is inconsistent with a 
simple iterative scheme. 

There is a straightforward way of eliminating this difficulty. There is no need that 
the same approximation for g be used in the position equation as in the velocity 
equation. This suggests the following procedure. Suppose we know the positions, 
forces, and velocities at time t. Using (2.5) we calculate r(r + h) by choosing the g 
that appears in this equation so that r(t + h) satisfies the constraints exactly (or to 
within a desired precision). Thus we replace (2.5) by 

r(t + h) = r(l) + hi(r) + h*[f[r(t)] + g,,(t)]/2. (2.7) 

Knowing r(t + h), we can calculatef[r(t + h)]. Then using (2.6) we calculate i(t + h) 
by choosing the second g that appears in this equation so that the resulting i(r + h) 
satisfies the time dericatives of the constraints exactly (or within a desired tolerance). 
Thus we replace (2.6) by 

i(f + h) = i(t) + MWI + hh(f) +f[rO + h)l + g,&)1/2. (2.8) 

This algorithm, which will be called RATTLE, makes two separate approximations, 
g,, and gRy, for the forces associated with the constraints. As a result, it is possible 
to require that both the positions and the velocities satisfy the constraints. The 
detailed equations for RATTLE are given in Appendix A. 
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III. PROPERTIES OF THE ALGORITHM RATTLE 

RATTLE, defined by Eqs. (2.7) and (2.8) and the conditions for the choice of 
gRR(r) and gRY(f), is an algorithm for integrating the equations of motion for 
molecules subject to intramolecular constraints. Its important characteristics are : ( 1) 
the positions and velocities at one time are used to calculate the positions and 
velocities at the next time, without using information about the positions or velocities 
at previous times, (2) the coordinates at each point in time satisfy the intramolecular 
constraints, (3) the velocities at each point in time satisfy the constraints, and (4) the 
precision with which the calculations are performed is comparable to that of the 
velocity version of the Verlet algorithm rather than the original version. The 
algorithm can be initiated by choosing the positions and the velocities at one point in 
time, and thus it is easy to implement stochastic collisions and a change in the 
magnitude of the time step. 

The global error of RATTLE is of order h* for small h, as in the Verlet algorithm 
for unconstrained dynamics and in SHAKE. The proof of this is in Appendix B. 
Among the implications of this is that energy along a calculated trajectory is 
conserved only to within errors of order h2. 

We have performed some test calculations on the simple problem of a pendulum 
swinging in a gravitational potential in two dimensions, using both RATTLE and 
SHAKE. The numerical work verifies that the global errors in the energy, the coor- 
dinates, and the velocities are quadratic in the time step used in the numerical 
integration. The coefficients of the quadratic errors are similar in magnitude for the 
two algorithms. The method has also been programmed for molecular dynamics 
calculations for water [ 141, and it appears to work satisfactorily. 

Since RATTLE requires calculation of two sets of constraint forces, g,, and g,,., 
rather than one as in SHAKE, this aspect of the computation will take longer for 
RATTLE than for SHAKE. Typically, the calculation of intermolecular forces 
requires the overwhelming fraction of the computing time, and so in practice 
RATTLE will be as efficient an algorithm as SHAKE. The two methods require the 
same amount of storage, namely, approximately 3N floating point numbers for N 
degrees of freedom. RATTLE has several advantages over SHAKE, as discussed in 
the Introduction, and thus it will be a useful alternative for performing molecular 
dynamics calculations on molecular models with internal constraints. 

APPENDIX A: DETAILS OF RATTLE 

We restrict attention to the case in which all the constraints are of the type that 
require certain pairs of mass points to remain a fixed distance apart. If i and j are 
such a pair of constrained atoms, we define 

Uij({r(t)}) E [ r i ( t )  -  rj(f)] ' -  dhV 



30 HANS C. ANDERSEN 

where ri is the position of atom i, m, is the mass of atom i. and djj is the fixed 
distance between atoms i andj. Then the constraint is expressed as 

aij((r(f)l) = O* (Al) 

The time derivatives of the constraint equations give constraints on the velocities, 
namely, 

[ii(f) - ij(f)] . [ri(f) - rj(t)] = 0. 

The equations for constrained dynamics are 

WI 

mii;, = F, + Gi, 

where Fi is the force due to intermolecular interactions and the intramolecular 
interactions not associated with constraints and Gi is the force on atom i due to the 
constraints. The latter is given by [4] 

Gi = - ~’ ~ij(t) V,U,~, 
j 

where the prime denotes a summation over only those atoms j that are connected 
with atom i by a constraint and the 1, are time-dependent Lagrange multipliers 
associated with the intramolecular forces of the constraints. (Note that cij = uji and 
nij=Aji.) 

The RATTLE algorithm involves making approximations for the lij. The first 
equation of RATTLE, Eq. (2.7), in the present notation is 

ri(f + h) = ri(t) + ki(f) + (h2/2mi)[Fi(t) 

-2 Z: ARRij(f) rij(f) 5 
i 1 

where r,(f) = ri(f) - rj(f). The quantities k,,,(f) are to be chosen so that the 
constraint equations (Al) are satisfied at time f + h. The second equation of 
RATTLE, Eq. (2.8), in the present notation is 

fi(f + h) = ii(f) + (h/hi) F,(t) - 2 7 ARRij(f) rij(t) 

X Fi(t + h) - 2 1 ARbJij(f + h) rij(f + h) 1 
j J 

The quantities kRY,,(t + h) are to be chosen to satisfy the time derivatives of the 
constraint equations, Eqs. (A2), at time f + h. The iterative method of Ryckaert et al. 
[4] is applicable to solving the equations for ARRij and ARYij. See Appendix C. 
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APPENDIX B: GLOBAL ERROR OF RATTLE 

We will prove that the local error of RATTLE, i.e., the error made in each time 
step, is the same as in the velocity form of the Verlet algorithm for unconstrained 
dynamics. It will then follow that the global errors of the two methods are the same, 
namely, of order h*. 

First consider Eq. (A3), the first equation of RATTLE. If n,,,(t) were replaced by 
the exactly correct (but unknown) Aii(l), then this equation would be a second order 
Taylor series expansion for ri(t + h). The resulting r(t + h) would have errors of order 
h3, and the constraint equations would be violated by amounts of order h3. Therefore, 
if the lRRij(f) are chosen to satisfy the constraints exactly, they need differ from the 
correct nii(t) by amounts of order h, 

l,,,(l) = n,(t) + O(h), (Bl) 

since lZRRij is multipled by a factor of h* in (A3). It follows that (A3) predicts 
positions at t + h that differ from the Taylor series predictions by an amount of order 
h3, and hence they differ from the correct positions at t + h by an amount of order 
h’. Therefore, the local error in r(t + h) as calculated by RATTLE is the same as 
that of the velocity form of the Verlet algorithm, namely, of order hf. 

Next consider Eq. (A4). If we replace 

2 ‘1’ l,,,(t) rij(t) 
i 

in this equation by the following equivalent quantity 

2 1’ l,(t) r,(f) + 2 :’ [L,,,(l) - Aij(l)] rij(t + h) 
j 

(A4) becomes 

i$i,t + h) = ii(t) + (h/2mi) X F,(t) - 2 x’ Afj(t) rij(t) 
i 

+ Fi(f + h) - 2 1 (E-,,ij(t + h) + A,,,(t) - A,(t)) r,(t + h) 
i 

- 2 2 [i,,,(t) - l,(t)] [rij(t) - rij(t + A)]- WI 

Note that the last sum in this equation contributes an amount of order h3 to ii, 
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because of (Bl). If this last term were neglected and if lR,.ii(f + h) were chosen so 
that 

Af(C.ij(f + j) + n,,ij(f) -  Aij(f) = ~jj(f + h) .  

then (B2) would be a Taylor series for ii that would be correct to order h’. The 
resulting ii would contain errors of order h” and would fail to satisfy the time 
derivatives of the constraints, namely (A2), by an amount of order h’. Restoration of 
the last sum in (B2) introduces additional errors of order h’. By making changes of 
order h* to ARvij(l + h), the constraints could be satisfied exactly, Therefore the 
lRvij(f + h) that make the velocities satisfy the constraints exactly are given by 

~Rr'ij(f + h)=~ij(f + h) + ~ij(f)-~RRii(f) + O(h').  

When this is substituted into (A3) it is seen that the RATTLE velocities differ from 
the exact Taylor series expression for the velocities by an amount of order h’. 
Therefore, the local error in i(f + h) generated by the RATTLE algorithm is of order 
h’, which is the same as that of the velocity form of the Verlet algorithm for 
unconstrained dynamics. 

APPENDIX C: ITERATIVE PROCEDURE FOR RATTLE CALCULATIONS 

Suppose that the positions, velocities, and intermolecular forces are known at time 
t. and we wish to calculate the corresponding quantities for the time f + h. This can 
be done by a straightforward modification of the iterative procedure of Ryckaert ef 
al. [4] for SHAKE. 

Let us define 

gij = “R/fijCfh 

k, = hl,,.,(t + h), 

9; = ii(t) + (h/2RZi) F;(t) - (l/m,) “ g,r,(t). 

Then Eqs. (A3) and (A4) can be expressed as 

'j(f + I I )=  r i ( f )  + hqj, 

ii(t + h) = qi + (h/2mi) Fi(t + h) - (l/m;) s’ kij’ij(f + h). 
i 

First we solve for the qi by interation. To start, we let 

qi = i(f) + (h/zm,) F,(f), i = l,..., N. 
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At this point the iterative loop begins. Pick a constraint. Suppose it involves atoms i 
and j. Let 

s = r)(t) + hq,(r) - rJt> - hq,(t). 

Then s is the current approximation for the vector displacement of atoms i andj. If 
lsl2 4; d’ff 1 ers f rom zero by an amount less than an acceptable tolerance, go to the 
beginning of the iterative loop and pick a new constraint. If not, then we want to find 
corrections for qi and qi to make the constraint be satisfied more closely. Let 

and 

‘f = ri(t) + h[qi - flij(l)/mi] 

rj’ = ri(r) + h[qj + @ij(t)/RZj]* 

These are the new values for r,(f + h) and rj(t + h), when the corrections proportional 
to g are made to qi and qj. We want to choose g so that 

Solving for g we find 

g = (s2 - d;j)/2h[ s . rijQ)](m; ’ + m,: ‘) 

where we have neglected quantities of order g*. Then we replace qi by the old value 
of qi minus gr&)/m,‘and replace qj by the old value of qj plus grij(t)/mj, go to the 
beginning of the iterative loop, and choose a new constraint. This iterative procedure 
is continued until all the constraints are satisfied to within the acceptable tolerance. 

The procedure converges to the correct result. At each stage of the iterative 
procedure, the q’s are corrected by an amount of the proper form, and the procedure 
terminates when all the constraints on the interatomic distances are satisfied to within 
the desired accuracy. 

Now that qi and ri(t + h) are known for all i, the forces at time t + h can be 
calculated. Just before doing this, the positions at time t + h should be placed in the 
memory locations that previously held the positions at time 1, and the qi, i = i,..., N, 
should be placed in the memory locations that previously held the velocities at time r. 
This allows the algorithm to be implemented using just 3N memory locations for N 
degrees of freedom. 

Next we solve for the i(t + h) by iteration. To start, we let 

ii@ + h) = qi + hF,(t + h)/2mi, i = l,..., N. 

At this point the iterative loop begins. Pick a constraint. Suppose it involves atoms i 
and j. Calculate the dot product of rij(t + h) and i,(r + h). If it differs from zero by 
less than an acceptable tolerance, then go to the beginning of the iterative loop and 
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pick another constraint. If it differs from zero by more than the acceptable tolerance. 
then we want to correct the two velocities, ii and ii. Let 

ii’ = ii@ + h) - kr,(t + h)/m, 

and 

ii’ = ij(f + h) + kr,(t + h)/rnj. 

These are the new values of ii@ + h) and ij(r + h) when corrections proportional to k 
are made. We want to choose k so that ir - ii’ is perpendicular to r,(t + h). This 
leads to the following choice: 

k = r,(t + h) . [i,(r + h) - ij(’ + h)]/d;(m;’ + my ‘). 

Then we replace ii(r + h) by if and ij(t + h) by if, go to the beginning of the 
iterative loop, and pick another constraint. 

This procedure converges to the correct result. At each stage of the iterative 
procedure, the ii(t + h) are corrected by an amount of the proper form, and the 
procedure terminates when all the constraints on the velocities are satisfied to within 
the desired accuracy. 
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