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Empirical interatomic potential for silicon with improved elastic properties
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An alternative parametrization is given for a previous empirical interatomic potential for silicon.
The new potential is designed to more accurately reproduce the elastic properties of silicon, which
were poorly described in the earlier potential. The properties of liquid Si are also improved, but en-
ergies of surfaces are less accurate. Detailed tests of the new potential are described.

Recently, there has been intense interest in developing
empirical interatomic potentials for covalent systems,
particularly for silicon. Such potentials, which express
the total energy of a system of atoms as an explicit func-
tion of the atomic positions, are so useful (if sufficiently
accurate) that at least eight independent groups have pro-
posed ten such potentials for silicon in the last four
years.! Unfortunately, some of these potentials have not
been tested or characterized sufficiently to draw any con-
clusions regarding their accuracy or usefulness.

In a recent paper,’ I proposed a form for an empirical
interatomic potential appropriate for covalent systems,
and suggested a specific set of parameters for silicon.
While the properties of silicon were well described
overall, the potential gave a poor description of bond-
bending forces. For many applications, such forces are
rather important, and so it seems desirable to seek an al-
ternative set of parameters which give a better descrip-
tion of the elastic properties of silicon.

Unfortunately, I have not been able to find a single set
of potential parameters which describe the elastic proper-
ties of silicon accurately, while at the same time preserv-
ing the good description of surface reconstructions of the
previous parametrization. However, by sacrificing some
accuracy in the description of highly rebonded surface
structures, a potential has been obtained which appears
to be superior for certain applications to that reported
earlier. This paper gives the parameters for the new po-
tential, along with results of a variety of tests which
highlight its strengths and weaknesses.

As discussed in Ref. 2, the energy is modeled as a sum
of pairlike interactions, where, however, the coefficient of
the attractive term in the pairlike potential (which plays
the role of a bond order) depends on the local environ-
ment, giving a many-body potential. The form of the en-
ergy E, as a function of the atomic coordinates, is taken
to be

E=3E=13V;,
1

i#j

(1a)
Vii=Ffclrijla; frry)+b;f 4(ri)],
fr(r)=A exp(—A,r),
(1b)
falr)=—Bexp(—A,r),
38

1, r<R-D
feln=it—1sin|2(r=R)/D|, R=D<r<R+D
0, r>R+D

(1c)

bij:(l_'_Bné-:zj)—l/Zn ,

Si= X fC(rxk)g(eijk)exp[}"g(rij'—rik)3]; (1d)
k (#i,j)

g(0)=1+c2/d*—c?/[d*+(h —cosb)?],

a;=(1+a"y})~'"*",
(1e)
= 3 fc(r,»k)exp[kg(rij_rik 7.
k (i)
Here, i, j, and k label the atoms of the system, r;; is the

length of the ij bond, and 6, is the bond angle between
bonds ij and ik. The physical motivation and interpreta-
tion of the respective terms are discussed in Ref. 2.

As in the earlier work, the parameters in the potential
are determined by fitting to a database consisting of
cohesive energies of real and hypothetical bulk polytypes
of silicon, along with the bulk modulus and bond length
in the diamond structure. However, in addition the po-
tential is now required to reproduce all three elastic con-
stants of silicon to within about 20%.

The resulting parameters are summarized in Table I,
along with the previously reported parameters. For con-
venience, the potential with the new parameters is re-
ferred to as Si(C), while the old parameters give Si(B).
[Si( 4) then denotes a still earlier potential,> which has
many attractive features, but unfortunately does not give
diamond as the ground state.*]

As discussed in Ref. 2, the parameters A3, a, R, and D
were not systematically optimized. Preliminary tests in-
dicate that omitting the term involving A; (i.e., taking
A3;=0) does not greatly change the results obtained.
Since this (along with a=0) greatly simplifies the poten-
tial, and especially the calculation of forces, anyone using
this potential might wish to first try taking A;=0, instead
of the value given in Table 1.
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TABLE I. Parameters for silicon, to be used in Eq. (1). New
parameters are denoted Si(C), previous parameters of Ref. 2 are
denoted Si(B). As discussed in text, values of R, D, a, and A,
were not systematically optimized.

Si(B) Si(C)
A V) 3.2647x 10° 1.8308 x 10°
B (eV) 9.5373 % 10! 4.7118 X 102
Ay (é‘l) 3.2394 2.4799
A (A7) 1.3258 1.7322
a 0.0 0.0
8 3.3675% 10! 1.0999 % 10~¢
n 2.2956 % 10! 7.8734% 107!
¢ 4.8381 1.0039 % 10°
d 2.0417 1.6218 X 10!
h 0.0000 —5.9826x 10"
A (ATh 1.3258 1.7322
R (A) 3.0 2.85
D (A) 0.2 0.15

Figure 1 summarizes the resulting energies and bond-
lengths of various high-symmetry polytypes of Si(C), and
compares them with results of experiment and of
quantum-mechanical calculations® within the local-
density approximation (LDA). The potential gives an ex-
cellent fit over the entire range of coordination.

Figure 1 compares structures with different atomic
coordination. To test whether the energy difference be-
tween structures with the same coordination but different
bond angles is well described, the properties of silicon in
the BCS8 structure are calculated. The BCS8 structure,
like diamond, has all atoms fourfold coordinated, and is

energy (eV)
|
w

-5

26}

24 ¢

bond length (A)

2.2 * . —-

0 2 4 6 8 10 12

coordination

FIG. 1. Cohesive energy per atom, and bond length, plotted
vs atomic coordination number, for several real and hypotheti-
cal polytypes of silicon: Si, dimer molecule, graphitic, diamond,
simple cubic, bce, and fcc. Squares are experimental values for
observed phases, and calculations of Yin and Cohen (Ref. 5) for
hypothetical phases. Circles are results of the present model.
Lines are spline fits to guide the eye.
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TABLE II. Calculated elastic constants (in Mbar) and pho-
non frequencies (in THz) of Si(C), compared with experiment.

Property Theory Experiment
c 1.5 1.7

cp2 0.8 0.6

Cyq 0.7 0.8
LTO(T) 16 16
TO(X) 16 14
LOA(X) 12 12
TA(X) 9 5

of interest both as a pressure-induced metastable phase,
and as a simple prototype for a tetrahedral amorphous
structure. The structure is completely specified by two
parameters, e.g., the lattice constant a and th°e internal
parameter x. For this potential, ¢ =6.64 A and x
=0.1008. The corresponding experimental numbers are
6.64 A and 0.1003+0.0008, so the description of the
structure here is excellent. The energy of silicon in the
BC8 structure is found to be 0.25 eV/atom above that in
the diamond structure, about 0.1 eV/atom more than the
value found® in LDA calculations.

Table II summarizes the elastic properties of Si(C).
The elastic constants agree rather well with the experi-
mental values, since this was an explicit criterion in the
fitting procedure. In contrast, Si(B) gave a value of ¢y,
almost an order of magnitude smaller than experiment.?
The phonon energies are also well described here, except
for the striking discrepancy for the transverse-acoustic
mode [TA(X)], which is a familiar feature of short-
ranged models and has been extensively discussed.’

Energies of point defects are crucial in determining the
mechanism and rate of diffusion in solids, and have there-
fore been extensively studied in silicon. Results for point
defects are summarized in Table III, along with results of
LDA calculations®® for comparison.

TABLE III. Calculated defect energies in Si(C), in eV, and
results of previous LDA calculations. Here vac, int, and exch
denote vacancy, interstitial, and the saddle point for exchange
identified by Pandey (Ref. 9).

Defect Theory LDA?
vac 3.7 3-4
split vac 3.5
int(7T) 3.8 5-6
int(H) 4.7 4-5
int(X) 45 4°
int(B) 59 4-5
int(S) 4.7
exch 5.7 4°

*Reference 8.
°Only one calculation available.
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FIG. 2. Radial distribution function g(r) of liquid Si(C) at
3000 K.

The results in Table III are consistently within 1-2 eV
of the LDA results, which is only a factor of 2 worse than
the consistency among LDA results of different groups.
Thus this potential is satisfactory even for the very
difficult problem of describing point defects, which in-
volve both severe rebonding and large strain.

Results for surfaces are less uniformly satisfactory for
the new potential. The most striking problem is that ada-
toms on Si(111), which should lower the surface energy
somewhat,'0 actually raise the surface energy by over 2
eV per adatom. This is similar to the problem which
occurs in treating adatoms with the potential of Stillinger
and Weber.!! For the Si(100) surface, the energy gain as-
sociated with dimerization is found to be 1.4 eV with this
potential. This is somewhat lower than the 2-eV gain ex-
pected from results of LDA calculations, although quite
acceptable. The contraction of the dimer bond relative to
the bulk bond length is well described.

Since the present potential is fitted only to static prop-
erties, it is important to test how well it works in describ-
ing excited configurations which are sampled in dynami-
cal processes or at elevated temperatures. A convenient
test is the simulation of liquid silicon, which was not well
described by the previous potential.>!2

An accurate determination of the melting point is
beyond the scope of the present study. In the short simu-
lation times which are practical, it is hard to rule out the
possibility of superheating of the crystal. However, limit-
ed studies suggest that the melting point for Si(C) may be
3000£500 K, almost twice the experimental value. Since
experimental measurements'® of liquid Si are typically
performed near the melting point, the simulation here is
performed at 3000 K, using techniques described previ-
ously,'* and a cell of 216 atoms.

The radial distribution function g (r) is shown in Fig. 2,
normalized so g(ow)=1. The first peak falls at about
2.45 A, with a maximum height of 2.4, and a full width at
half maximum of about 0.52 A; the second peak falls at
3.9 A. The corresponding experimental numbers'® are
2.50, 2.5, 0.6, and 3.8 A, respectlvely This level of de-
tailed agreement is gratifying, given the very limited da-
tabase to which the potential was fitted. However, one
should bear in mind that the temperature in the simula-
tion is much higher than in the experiment.
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FIG. 3. Radial distribution function g (r) of amorphous Si(C)

at 300 K.

The density of the liquid at zero pressure is found to
increase by about 4% upon melting (at a constant tem-
perature of 3000 K), in good agreement with the 5% in-
crease observed experimentally.

On the other hand, the first dip in g(r) is much too
deep, going down to about 0.5; the experimental g(r)
only dips to 0.85. It seems likely that the somewhat
sharp cutoff of the potent1al between 2.7 and 3.0 A is re-
sponsible for the sharp dip in g (7) in this distance range.
Also, the number of neighbors found by integrating up to
the minimum of the first dip is about 4.6. The experimen-
tal coordination (obtained by an average of three
methods) is larger, 6.4 neighbors. [However, no measure
of the experimental uncertainty is given in Ref. 13. In
view of the very weak dip in the experimental g(r), the
coordination in the liquid may not be a very meaningful
quantity.]

When the liquid is quenched quickly, the resulting
amorphous silicon (a-Si) has an average coordination of
4.25, rather than the value of 4.00 expected for a-Si. This
coordination can be reduced by subsequent annealing (or,
presumably, by slower quenching). Annealing goes more
quickly when accompanied by a negative applied pres-
sure, in analogy to the work of Kluge, Ray, and Rah-
man.

The best sample obtained so far has an average coordi-
nation of 4.09, and a radial distribution function which is
shown in Fig. 3. The energy is lowered significantly by
this procedure, indicating that the initial high coordina-
tion is simply due to kinetic barriers to formation of the
tetrahedral amorphous state from the liquid.

In conclusion, this new parametrization of an empirical
potential for silicon has significant advantages for many
applications. The elastic properties of the solid are con-
siderably improved, as is the description of the structure
of the liquid and amorphous states. Energies and bond
lengths of polytypes are still well reproduced. However,
energies of some surface geometries are considerably less
accurate than for the previous parametrization of Ref. 2.
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