
Vibrations of Atoms. Phonons

Vibrations of atoms: General theory

We start with the general theory of vibrations of atoms that does not distin-
guish between molecules, amorphous solids, and crystals. As we discussed
before, the adiabatic parameter (me is the electron mass, m∗ is the typical
mass of nuclei)

me/m∗ � 1 (1)

guarantees the following two facts. (i) The low-lying modes of the system can
be viewed as the motion of nuclei in the effective potential U({Rn})—with
{Rn} the set of all the nuclei coordinates—consisting of the direct Coulomb
repulsion of the ions and the groundstate energy of all the electrons in the
potential of all the ions fixed at the positions {Rn}. (ii) As long as the
quantum numbers of the excitations are not very large, the excitations are
nothing but harmonic modes. The latter circumstance is crucially impor-
tant. In classical mechanics, the harmonicity of small-amplitude excitations
about an equilibrium state is guaranteed by an appropriate smallness of
the amplitude, or, equivalently, an appropriate smallness of the excitation
energy. In quantum mechanics, the amplitudes of zero-point motion and
low-lying excitations are finite, and, speaking generally, the motion is not
supposed to be harmonic even for the lowest excited states.

The harmonicity of the motion guaranteed by the parameter (1) allows
us to proceed classically, because the correspondence between classical and
quantum harmonic oscillations is under perfect theoretical control. In fact,
the purely quantum treatment is as simple as the classical one, and later
on we will discuss it as well. The reason why we start with the classical
picture is because it is very instructive to trace the connection to the general
classical-mechanical theory of the normal modes.

The Lagrangian of the system reads

L =
∑
n

mnu̇
2
n

2
− U({Rn}) , (2)

where mn is the mass of the n-th atom, and un is the displacement of the

n-th atom from its equilibrium position R
(0)
n : Rn = R

(0)
n + un, so that

Ṙn = u̇n. To arrive at the normal modes we Taylor-expand the potential at
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the point R
(0)
n up to the second-order terms (i, i′ = x, y, z):

U({Rn}) = U({R(0)
n }) +

∑
ni

(
∂U

∂Rin

)
uin +

1

2

∑
nn′ii′

(
∂2U

∂Rin∂R
i′
n′

)
uinu

i′
n′ + . . . .

(3)
The first term is a constant and thus is irrelevant for the equations of motion.
The second term is identically zero since the equilibrium corresponds to an
extremum of the potential. Hence, the leading term in the equations of
motion at small enough displacements is the third term. Neglecting the
higher-order terms, for the equations of motion we get

mnü
i
n = −

∑
n′i′

Aii
′

nn′ u
i′
n′ , (4)

where

Aiknn′ =
1

2

(
∂2U

∂Rin∂R
i′
n′

+
∂2U

∂Ri
′
n′∂R

i
n

)∣∣∣∣∣
{Rn}={R(0)

n }
. (5)

At the formal level, we are dealing with a very simple mathematical problem,
a system of linear homogeneous ordinary differential equations with constant
coefficients. The linearity and homogeneity (i.e. absence of u-independent
terms) of the equations allow one to construct the general solution as a linear
combination of elementary ones. And the fact that the coefficients are time-
independent means that the elementary solutions can be obtained by the
exponential substitutions. Hence, we look for the elementary solutions—the
normal modes—of the form (we look for a complex solution and then take
the real or imaginary part)

un(t) =
vn√
mn

e−iωt , (6)

where vn is a certain constant vector (the square root of the mass in the
denominator is for future convenience) and ω is the frequency of the mode
(the minus sign is the matter of convention). Substituting (6) into (4) and
dropping the global exponential factor, we arrive at a system of algebraic
equations:

ω2vin =
∑
n′i′

Ãii
′

nn′ v
i′
n′ , (7)

where

Ãii
′

nn′ =
Aii
′

nn′√
mnmn′

. (8)
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To clearly see the matrix structure of the system (7), introduce the composite
subscripts α = (n, i) and β = (n′, i′), and rewrite (7) as∑

β

Ãαβ vβ = ω2vα . (9)

Hence, the solutions are the eigenvectors of the matrix Ã and the frequencies
are the square roots of corresponding eigenvalues. Hence, we are dealing
with the standard linear algebra problem: The frequencies are given by the
solution of the characteristic equation

det(Ã− ω2I) = 0 , (10)

where I = δαβ ≡ δnn′δii′ is the unity matrix. The matrix Ã is a Hermi-
tian matrix—it is obviously real by construction and symmetric by (5) and
(8)—and thus all its eigenvalues are real. Moreover, for a stable equilib-
rium point, that is a (local) minimum of U , there should be no negative
eigenvalues. (There should be a few zero eigenvalues because of the global
translational and rotational symmetry of the system.) The two different
signs of ω correspond to one and the same physical solution in view of the
necessity of taking the real (or imaginary) part of (6), after which changing
the sign translates into the phase shift by π; the former is redundant given
an arbitrary phase of the complex amplitude vn.

Phonons

In a crystal, n → (n, j), where n labels the primitive cell corresponding to
the translation of the basis by the vector Tn, and j is the label of the atom
in a primitive cell; if there is only one atom in the primitive cell, j becomes
redundant. Equation (4) now reads

mj ü
i
nj = −

∑
n′j′i′

Aii
′

jj′(n− n′)ui
′
n′j′ . (11)

The two crucial properties of (11) as compared to generic Eq. (4) are the
dependence of masses only on j, and the dependence of the constants A on
n and n′ in the form of difference. These properties are due to the crystal
symmetry of the system.

With the crystal symmetry, and assuming for simplicity that the system
is infinitely large, one can look for the elementary solutions in the form of
the plane waves (as usual, we look for a complex solution and then take the
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real or imaginary part)

unj(t) = uj(q, t) eiq·R
(0)
nj = uj(q, 0) eiq·R

(0)
nj −iω(q)t , (12)

where, in accordance with the notation of the previous subsection, R
(0)
nj

stands for the equilibrium position of the j-th atom in the cell n. The
physical meaning of Eq. (12) is that its real (or imaginary) part represents
a wave of displacements with the wavevector q. By crystal symmetry,

R
(0)
nj = R

(0)
0j + Tn , (13)

and absorbing the (otherwise redundant) exponential factor eiq·R
(0)
0j into the

amplitude uj(q, 0):

uj(q, 0) eiq·R
(0)
0j → uj(q, 0) , (14)

we write (12) in the form

unj(t) = uj(q, 0) eiq·Tn−iω(q)t . (15)

Now we substitute (15) into (11), perform time differentiation, and divide
both parts by eiq·Tn−iω(q)t . With Tn − Tn′ = Tn−n′ taken into account,
we then get

−ω2(q)mj u
i
j(q, 0) = −

∑
j′i′

Cii
′

jj′(q)ui
′
j′(q, 0) , (16)

with

Cii
′

jj′(q) =
∑
n′

Aii
′

jj′(n− n′) e−iq·Tn−n′ =
∑
n1

Aii
′

jj′(n1) e−iq·Tn1 . (17)

(Note that the dependence on n drops out due to the infinite system size.)
We see that the infinite system of equations (12) decouples into finite systems
of dν0 equations (d is the dimensionality of the space and ν0 is the number
of atoms in the basis) for each individual wavevector q. Each of the systems
has exactly the same mathematical structure coinciding with that of the
problem (4) of the previous subsection. Hence, we utilize the relations (6)
through (10), replacing n→ j and A→ C (for a fixed wavevector q playing
the role of an external parameter). As a result, we get an elementary solution
in the form of the running plane wave (the operation of taking the real part
is performed after finding the complex solution)

unj(t) = Re
vj(q)
√
mj

eiq·Tn−iω(q)t . (18)
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Each elementary mode (18) is referred to as a phonon mode. For a given
wavevector q, there are dν0 linear independent elementary solutions given
by the system of dν0 equations [below α ≡ (i, j) and β ≡ (i′, j′)]

dν0∑
β=1

C̃αβ vβ = ω2vα (α = 1, 2, . . . , dν0) , (19)

where

C̃ii
′

jj′(q) =
Cii
′

jj′(q)
√
mjmj′

. (20)

The frequencies of the phonon modes (phonons) are found from the charac-
teristic equation (I ≡ δii′δjj′)

det
[
C̃(q)− ω2(q) I

]
= 0 . (21)

Without loss of generality, we can require that ω ≥ 0 since, as we discussed
it in the previous sub-section, changing the sign of ω becomes redundant
after taking the real part of the solution.

The rank of the matrix C̃ equals dν0, so that there are dν0 different
phonon branches. For each of the branches, all distinctively different so-
lutions are exhausted by q’s lying within the first Brillouin zone. We can
see that from the invariance of the matrix C(q), Eq. (17), and then the
solution (15), with respect to shifting q by any vector G of the reciprocal
lattice. This, in particular, implies that ω(q) is periodic in the reciprocal
(i.e., wavevector) space:

ω(q + G) = ω(q) . (22)

Let us discuss some properties of the matrix C̃ and their implications.
Taking into account the general symmetries of the matrix A discussed in
the previous sub-section—the matrix A is real and symmetric with respect
to exchanging (i, j,n) ↔ (i′, j′,n′)—we check with (17) that the matrix C
is Hermitian, and then from (20) see that C̃ is Hermitian as well. Hence,
ω2 is real. (The fact that ω2 ≥ 0 follows from mechanical stability of the
system.) From (17) and the fact that the matrix A is real, we conclude that
C∗(q) = C(−q); the same is then trivially true for C̃:

C̃∗(q) = C̃(−q) . (23)

Now complex-conjugating (21) and taking into account (23) along with the
fact that ω(q) is real, we get

det
[
C̃(−q)− ω2(q) I

]
= 0 , (24)
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meaning that
ω(−q) = ω(q) . (25)

Combining Eqs. (25) and (22), we find

ω(G/2 + q) = ω(G/2− q) , (26)

which in its turn implies
∂ω

∂q

∣∣∣∣
q=G/2

= 0 , (27)

meaning that, in the wavevector space, all the points q = G/2 are the points
of extrema of the function ω(q). In accordance with the general theory of
wave packets, the gradient ∂ω/∂q yields the so-called group velocity—the
velocity of propagation of the wave packet with the wavevector q. Equation
(27) thus states that the group velocity for all the phonons with q = G/2
vanishes. And this is consistent with the fact that all the q = G/2 phonons
have a common structure of a standing rather than running wave. The
spatial pattern of the vibrational mode at q = G/2 becomes clear from the
observation that

eiG·Tn/2 = exp(iπ × integer) = ±1 , (28)

meaning that the Bravais lattice splits into two rigid sub-lattices performing
counter-phase oscillations.

In the previous subsection we mentioned that continuous-space rota-
tional and translational symmetries of the finite-size atomic systems (molecules)
imply that there are correponding modes with zero frequencies. The rota-
tional symmetry is irrelevant to the spectrum of phonons because the solu-
tion (18) does not capture a global rotation of the system.1 In the context of
phonons, it is only the continuous translation of all the atoms by the same
vector e0 that is captured by the solution (18). In this case q = 0, ω = 0, be-
cause unj(t) ≡ e0. Given that there are d linear independent choices of the
vector e0, there should be d phonon branches such that limq→0 ω(q) = 0.
These branches are called acoustic branches. The dispersion ω(q) of the
acoustic branches is linear at sufficiently small q. This is readily seen by
Taylor expanding ω2(q)—the eigenvalues of the matrix C̃(q) are normally
analytic functions of q—up to the second order [the linear terms vanish in
accordance with (25)] :

ω2(q) →
∑
ik

γik qiqk at q → 0 . (29)

1For a rotation, the amplitude of the displacement grows linearly with the distance
from the rotation center.
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Here qi and qk are components of the vector q, and γik is a real and, without
loss of generality, symmetric2 matrix. The phonons of the acoustic branches
at low enough wawevectors corresponding to the linear dispersion are called
acoustic phonons. They are nothing but the elastic sound waves. As we
see from Eq. (29), the sound velocity in a generic crystal depends on the
direction of the wavevector:

vsound(q/q) =

√∑
ik

γik qiqk/q2 . (30)

Born–von Karman boundary condition. Lattice Fourier transform

Sometimes it is very convenient to work with a finite rather than infinite
system. In particular, this is important in statistics. If we are interested in
the thermodynamic properties of a macroscopic system, particular bound-
ary conditions do not change the final answer. That is why it makes perfect
sense to select the simplest possible boundary conditions, namely the con-
ditions under which there are no boundaries at all. We mean the periodic
(a.k.a. Born–von Karman) boundary conditions. Let Qn be some quantity
defined in a crystal, n labeling the cell corresponding to the translation vec-
tor Tn. The quantity can be either vector or scalar, and it can also depend
on the number of atoms in the primitive cell. Fore example, it can be the
i-th component of the vector of displacement of the j-th atom (in the cell
n). For our purposes, all the super- and subscripts different from n are not
important, and we suppress them. Formally, we pretend that our crystal is
infinite. The actual finiteness of the system—by which we mean the finite
number of degrees of freedom—is enforced by the Born–von Karman bound-
ary conditions. To formulate these conditions, we pick up some primitive
set of translations vectors (a1,a2,a3), select three “macroscopic” integers,
N1, N2, and N3, defining the desired linear sizes of the system in each of the
three directions, and require that all the functions Qn ≡ Q(Tn) be periodic
with respect to the “macroscopic” translations, ~T ,

Q(Tn + ~T ) = Q(Tn) , (31)

defined as
~T ≡ ~Tl = l1N1a1 + l2N2a2 + l3N3a3 , (32)

2Since it can always be symmetrized.
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where li (i = 1, 2, 3) are integers. All the vectors ~T form a translation
group GT , with a primitive set (N1a1, N2a2, N3a3). The group GT is a
subgroup of GT , because for any vector ~Tl we have ~Tl = Tn, where n =
(l1N1, l2N2, l3N3). With respect to the periodic structure generated by the
translations ~Tl, our physical system plays the role of a (macroscopically
large) unit cell.

The periodicity of the problem allows one to employ the Fourier trans-
form technique. We already know that the Fourier transform should be
based on the plane waves with the reciprocal-lattice wavevectors. This lat-
tice corresponds to the group Gq (reciprocal to GT ) consisting of the following
vectors

q ≡ qm =
m1b1

N1
+
m2b2

N2
+
m3b3

N3
, (33)

where (b1,b2,b3) is the primitive set reciprocal to (a1,a2,a3) [bi · aj =
2πδij ] and mi (i = 1, 2, 3) are integers. Indeed, if the set (b1,b2,b3) is
reciprocal to (a1,a2,a3), then the set (b1/N1,b2/N2,b3/N3) is reciprocal
to (N1a1, N2a2, N3a3). [Note that the group GG is a subgroup of Gq.]

An important feature of the Fourier transform that comes from the dis-
creteness of Qn—the fact that we are dealing with the set of N = N1N2N3

numbers rather than a function of continuous coordinate—is the finite num-
ber N of independent Fourier harmonics Fm ≡ F (qm). The resulting Fourier
transform has the following form

Qn =
1√
N

BZ∑
m

eiqm·Tn Fm , (34)

Fm =
1√
N

(system)∑
n

e−iqm·Tn Qn . (35)

Here the summation over m and n is over distinctively different N values of
Fm and Qn, respectively. The symbol BZ here is understood in a broader
context: It can be just the first Brillouin zone, as well as any primitive cell
of the reciprocal lattice. For example,

BZ∑
m

(· · ·) =
N1−1∑
m1=0

N2−1∑
m2=0

N3−1∑
m3=0

(· · ·) , (36)

(system)∑
n

(· · ·) =
N1−1∑
n1=0

N2−1∑
n2=0

N3−1∑
n3=0

(· · ·) . (37)
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In general, it is seen that the sum over n does not change if for a given n = n0

we replace Tn0 → Tn0+~T . For any m = m0 we can replace qm0 → qm0+G:
the exponentials and Fm0 will remain the same. Hence, the summation over
m can be done within either the first Brillouin zone of the lattice GG, or
any other primitive cell of GG (containing N distinctively different Fourier
coefficients Fm). Note that apart from the sign of the exponents, which is
the matter of convention, there is a perfect symmetry between the quantities
Qn and the Fourier transforms Fm. To further emphasize the symmetry, we
note that the exponentials actually depend only on n, m, and the three
numbers Ni (note also factorization of the exponential):

eiqm·Tn = e
i
2πm1n1
N1 e

i
2πm2n2
N2 e

i
2πm3n3
N3 . (38)

The type and period of the Bravais lattice play no role for the Fourier
transform!

To prove the Fourier transform (34)-(35) we have to demonstrate that
(35) implies (34), and vice versa. The poof is based on the following two
relations (both being essentially the same relation, up to summing in the
direct or reciprocal space):

(system)∑
n

e±iqm·Tn =

{
N , qm = G ,
0 , otherwise ,

(39)

BZ∑
m

e±iqm·Tn =

{
N , Tn = ~T ,
0 , otherwise .

(40)

The upper lines in these equalities are trivial, so we only need to show that
the sum (39) is zero for qm 6= G, and the sum (40) is zero for Tn 6= ~T .
Using (37) and (38), we reduce the sum to a product of three geometric
series:

(system)∑
n

e±iqm·Tn =

N1−1∑
n1=0

e
±i 2πm1n1

N1

N2−1∑
n2=0

e
±i 2πm2n2

N2

N3−1∑
n3=0

e
±i 2πm3n3

N3

 .

We then have (j = 1, 2, 3)

Nj−1∑
nj=0

e
±i

2πmjnj
Nj =

{
Nj , mj/Nj = integer ,(

1− e±i2πmj
)
/
(
1− e±i2πmj/Nj

)
= 0 , otherwise ,

which proves (39). Analogously, using (36) and (38), we prove (40). To show
that (35) implies (34), we multiply both sides of (35) by (1/

√
N)eiqm·Tn0
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and sum over m, with taking into account (40):

1√
N

BZ∑
m

eiqm·Tn0 Fm =
1

N

(system)∑
n

Qn

BZ∑
m

eiqm·(Tn0−Tn) = Qn0 .

Here we also take into account that within the system there is only one
cell n satisfying the condition Tn = Tn0 + ~T , namely n = n0. Given the
symmetry between (34)and (35), and between (39) and (40), the proof that
(34) implies (35) is essentially the same.

Thermodynamics of phonons

General relations for harmonic modes

In the harmonic approximation3 phonons are non-interacting harmonic
oscillators. For thermodynamic purposes, it is convenient to set h̄ = 1, kB =
1 and measure phonon frequency in Kelvins. The typical frequency of
phonons (corresponding to the wavevectors on the order of the inverse lat-
tice period) is ∼ 300 K. This means that at the temperatures significantly
less than the room temperature the quantization of phonons is crucial and
we are dealing with the thermodynamics of an ensemble of non-interacting
quantum harmonic oscillators described by the Hamiltonian:

Hph =
∑
νq

ενq
(
b†νqbνq + 1/2

)
, (41)

where ν = 1, 2, . . . , ν0 enumerates the phonon branches, q is the phonon
wavevector, ενq = ων(q) is the quantum of energy (we remind that h̄ = 1)
of the mode (ν,q)—we call it the energy of the phonon, because quantum-
mechanically the phonon (ν,q) is understood as the excitation quantum of

the mode (ν,q). The operators b†νq and bνq are the creation and annihilation

operators of the phonon, so that n̂νq = b†νqbνq is the operator4 of the total
number of phonons of the mode (ν,q). It is convenient to split the phonon
Hamiltonian into the groundstate term,5

E
(ph)
0 = (1/2)

∑
νq

ενq , (42)

3The harmonic approximation—the accuracy of which is controlled by the adiabaticity
parameter (1)—corresponds to replacing actual interparticle interactions with pairwise

harmonic potentials with the distance-independent spring constants Aii
′

jj′(n− n′).
4For thermodynamic purposes, we only care about the eigenvalues of of the Hamiltonian

(41), that is only about the eigenvalues nνq = 0, 1, 2, . . . of the operators n̂νq.
5Physically, this term is due to the zero-point fluctuations of nuclei.
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and the sum of single-mode Hamiltonians:

Hph = E
(ph)
0 +

∑
νq

Hνq , Hνq = ενqn̂νq . (43)

The groundstate term is just a constant that should be added to the total
groundstate energy of the crystal found at fixed positions of the nuclei. The
thermodynamic role of the groundstate energy is trivial; we thus omit this
term from now on.

The standard statistico-mechanical protocol of evaluating thermody-
namic functions of a quantum system is based on the two general relations
between the free energy, F , partition function, Z, and the statistical opera-
tor, e−H/T :

F = −T lnZ , Z = Tr e−H/T . (44)

Since our Hamiltonian is a sum of Hamiltonians of independent subsystems—
each phonon mode (ν,q) is a harmonic oscillator decoupled from the rest
of the world—the partition function factorizes into the product of partition
functions for each individual mode:

Z =
∏
νq

Zνq , (45)

Zνq = Tr e−Hνq/T =
∞∑
n=0

e−ενq n/T =
1

1− e−ενq/T
. (46)

We thus get the following expression for the free energy

F = T
∑
νq

ln
(
1− e−ενq/T

)
. (47)

In fact, our treatment is generic for any system that can be viewed as a
set of independent harmonic oscillators, up to replacing (if necessary) the
composite subscript (ν,q) with the one relevant to the particular system.
For example, for the theory of equilibrium electro-magnetic field (normally
referred to as the theory of black body radiation) the wavevector q would
be the wavevector of a photon, while ν = 1, 2 would label the polarization
of the photon, and ενq = cq, with c the speed of light, would be the photon
dispersion (note that with h̄ = 1 the wavevector q is equal to the momen-
tum). The difference between phonons and photons is only in (i) the number
of branches and (ii) the form of the function ενq. (The latter includes the
domain of ενq, which, in the case of phonons, is limited to the first Brillouin
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zone for the vector q.) Moreover, with minor modifications the theory ap-
plies to a gas of non-interacting bosonic particles with conservation of their
total number.6

The universality of the treatment becomes especially transparent when
one introduces the spectral density function,

D(ε) =
∑
νq

δ(ε− ενq) , (48)

and writes the expression for the free energy in the form

F = T

∫
dεD(ε) ln

(
1− e−ε/T

)
. (49)

This procedure is naturally combined with replacing the summation in (48)
with integration—see below—in which case the function D(ε) becomes a
regular function, apart from special singular points, the so-called Van Hove
singularities, associated with points of extrema of the function ενq.

In Eq. (49), all the information about the system specific properties is
encoded in the temperature independent function D(ε) while the bosonic
nature of the system comes from the universal temperature dependent fac-

tor ln
(
1− e−ε/T

)
. The problem thus splits into two separate parts: (i)

calculation—and/or exploring important limiting cases—of the functionD(ε)
and (ii) proceeding with Eq. (49) to get the other thermodynamic quantities.
The part (ii) can be done in general form—without explicitly calculating
D(ε)—on the basis of general thermodynamic relations. Indeed,

S = −
(
∂F

∂T

)
V

=

∫
dεD(ε)

[
ε/T

eε/T − 1
− ln

(
1− e−ε/T

)]
, (50)

E = F + TS =

∫
dεD(ε) ε

eε/T − 1
, (51)

CV =

(
∂E

∂T

)
V

= T

(
∂S

∂T

)
V

=

∫
dεD(ε)

(ε/T )2 eε/T

(eε/T − 1)2
. (52)

The expression for the energy has a very transparent form:

E =

∫
dεD(ε) ε nε , (53)

6Accounting for the conservation of the total number of bosons amounts to shifting
the energy ενq → ενq−µ by the chemical potential µ, the value of which is then adjusted
to get the desired total number of particles. An important circumstance to remember is
that in this case one also has to replace the free energy in the l.h.s. of Eq. (47) with the
grand canonical potential.
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where

nε =
1

eε/T − 1
(54)

is known to be the thermodynamic average for the occupation number of the
bosonic mode with the energy ε. Similarly, for the total number of bosons
we have

Nbosons =

∫
dεD(ε)nε . (55)

For both photons and phonons this number depends on temperature, van-
ishing at T → 0 and diverging at T →∞.

Summation in the wavevector space. Dimensionless wavevector

For a macroscopic crystal, the summation in the wavevector space is
replaced by an integration. Indeed, the vector q ≡ qm, Eq. (33) changes by
a macroscopically small amount when the components of the integer vector
m change by unity. Hence, with the macroscopic accuracy we can replace
summation over m with the integration (below d3m ≡ dm1dm2dm3):

∑
q

(. . .) ≡
BZ∑
m

(. . .) ≈
∫
BZ

d3m (. . .) . (56)

The integration over d3m can then be replaced with the (more convenient)
integration over d3q:∫

BZ
d3m (. . .) =

∫
BZ

d3q |J | (. . .) , (57)

where

J =
D(m1,m2,m3)

D(qx, qy, qz)
(58)

is the Jacobian of the transformation of variables m → q. To evaluate J ,
we observe that its inverse is straightforwardly found from Eq. (33):

J−1 =
D(qx, qy, qz)

D(m1,m2,m3)
=

∣∣∣∣∣∣∣∣∣∣

∂qx
∂m1

∂qy
∂m1

∂qz
∂m1

∂qx
∂m2

∂qy
∂m2

∂qz
∂m2

∂qx
∂m3

∂qy
∂m3

∂qz
∂m3

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
b1x/N1 b1y/N1 b1z/N1

b2x/N2 b2y/N2 b2z/N2

b3x/N3 b3y/N3 b3z/N3

∣∣∣∣∣∣∣∣ .
We see that, up to the sign, J−1 equals to the ratio of the volume of the

primitive cell of the reciprocal lattice, V
(rcpr)
c , and the total number of cells:

|J |−1 = V (rcpr)
c /N , V (rcpr)

c = |b1 · (b2 × b3)| . (59)
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Recalling that V
(rcpr)
c is related to the volume of the primitive cell of the

direct lattice by V
(rcpr)
c = (2π)3/Vc (see the Reciprocal Lattice section), we

arrive at the universal (independent of the lattice type) relation:∑
q

(. . .) → V

(2π)3

∫
BZ

d3q (. . .) , (60)

where V = NVc is the volume of the crystal. Apart from confining the
integration to the first Brillouin zone, the form of (60) is identical to the
integration over wavevectors in the continuous space. Normally, this sim-
ilarity is very instructive, especially when one deals with the limit of low
energies and, correspondingly, small q’s. Nevertheless, there are cases when
the similarity is deceptive. Those are the cases when the thermodynamic
role of the system volume goes beyond being a trivial macroscopic factor
scaling the total amount of matter. We are talking of the response of the
crystal to changing the volume at fixed amount of matter, implying fixed
number of the cells. Here it is important to realize that the dependence of
the function (we omit ν for briefness)

D(ε) =
V

(2π)3

∫
BZ

d3q δ(ε− εq)

on the volume comes also from the volume dependence of εq. Moreover, the
two dependencies exactly cancel each other in a harmonic crystal!

Indeed, since, by the definition of the harmonic crystal, the spring con-
stants Aii

′
jj′(n) are distance independent, the dependence of the constants

Cii
′

jj′(q) on lattice periods is exclusively due to the fact that for a fixed m
the value of the vector q = qm depends on the lattice period. The coef-
ficient Cii

′
jj′(qm) remains the same for a given m irrespectively of changing

the lattice period:

Cii
′

jj′(qm) =
∑
n

Aii
′

jj′(n) e−iqm ·Tn =
∑
n

Aii
′

jj′(n) e−igm·n ,

where

gm = 2π

(
m1

N1
,
m2

N2
,
m3

N3

)
(61)

is a dimensionless wavevector living in the space associated with the lattice
reciprocal to the simple cubic lattice formed by the integer vectors n. (Note
that the first Brillouine zone of this space is a cube with the side 2π.) We
see that that the dependence on the lattice periods drops out if we use g as
a parameter:

Cii
′

jj′(g) =
∑
n

Aii
′

jj′(n) e−ig·n .
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Therefore, the frequencies, if expressed as functions of g, are also volume-
independent. Finally, replacing the summation over the wavevector g with
integration,

dm1 = (N1/2π)dg1 , dm2 = (N2/2π)dg2 , dm3 = (N3/2π)dg3 ,

we find that ∑
q

(. . .) → N

(2π)3

∫
BZ

d3g (. . .) , (62)

where ∫
BZ

d3g (. . .) ≡
∫ π

−π
dg1

∫ π

−π
dg2

∫ π

−π
dg3 (. . .) . (63)

With Eq. (62) we have

D(ε) =
N

(2π)3

∑
ν

∫
BZ

d3g δ(ε− εν(g)) ,

E
(ph)
0 =

N

16π3

∑
ν

∫
BZ

d3g εν(g) ,

and, recalling that ε(g) does not depend on the lattice periods, conclude

that D(ε) and the energy E
(ph)
0 (of the zero-point motion of phonons) do

not depend on the volume (more generally, any linear size) of the crystal.
There are crucial thermodynamic implications of this fact. The phonon
contribution to pressure is absent:

P (ph) = −
(
∂F (ph)

∂V

)
T

= 0 .

Correspondingly, there is no thermal expansion in a harmonic crystal.

Quantum theory of phonons

We start with the harmonic Hamiltonian

H =
∑
α

p2
α

2mα
+

1

2

∑
α,β

Aαβ uαuβ . (64)

Here {uα} is the set of scalar coordinates (displacements); the structure
of the subscript α is not important at this point; pα = −i∂/∂uα is the

15



momentum operator (h̄ = 1), mα is the mass, and the matrix Aαβ is real
and symmetric.7

First, we get rid of masses by performing a simple canonical transforma-
tion [re-scaling of the coordinates and momenta]:

uα =
ũα√
mα

, pα =
√
mα p̃α . (65)

H =
1

2

∑
α

p̃2
α +

1

2

∑
α,β

Ãαβ ũαũβ , (66)

with

Ãαβ =
Aαβ√
mαmβ

. (67)

Below we omit tildes for briefness.
Consider the set {e(s)

α } of eigenvectors of the matrix Aαβ (here s is the
label of the eigenvector): ∑

β

Aαβ e
(s)
β = λ(s)e(s)

α . (68)

Since our matrix is Hermitian all its eigenvalues λ(s) are real. Moreover,
they have to be non-negative—otherwise the system is unstable—and we
can write them as

λ(s) = ω2
s (ωs ≥ 0) . (69)

We then require that (i) the set of vectors {e(s)
α } is orthonormal and (ii) all

the vectors are real; this can be always achieved for a real Hermitian matrix.
As a result, we have the following properties∑

α

e(s1)
α e(s2)

α = δs1s2 ,
∑
s

e(s)
α e

(s)
β = δαβ . (70)

Then we perform a canonical transformation to the new coordinates, {Xs},
and momenta, {Ps}:

uα =
∑
s

e(s)
α Xs , pα =

∑
s

e(s)
α Ps , (71)

the inverse transformation being

Xs =
∑
α

e(s)
α uα , Ps =

∑
α

e(s)
α pα . (72)

7If the matrix Aαβ is not symmetric, we can safely symmetrize it by Aαβ → (Aαβ +
Aβα)/2.
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The properties (70) guarantee that the new operators satisfy the canonical
commutation relations:

[Xs1 , Ps2 ] = iδs1s2 , [Xs1 , Xs2 ] = 0 , [Ps1 , Ps2 ] = 0 . (73)

Substituting (72) into the Hamiltonian and using (68)-(70), we arrive at the
system of independent quantum harmonic oscillators

H =
1

2

∑
s

(
P 2
s + ω2

s X
2
s

)
. (74)

The Hamiltonian (74) is readily written in the standard form

H =
∑
s

ωs
(
b†sbs + 1/2

)
, (75)

with the annihilation and creation operators

bs =
ωsXs + iPs√

2ωs
, b†s =

ωsXs − iPs√
2ωs

, (76)

in terms of which

Xs =
bs + b†s√

2ωs
, Ps = i

√
ωs
2

(
b†s − bs

)
. (77)

It is important that Eqs. (76) and (73) imply the commutation relations

[bs1 , b
†
s2 ] = δs1s2 , [bs1 , bs2 ] = 0 . (78)

In accordance with (65), (72), and (77), the expression for the original
coordinates in terms of the creation and annihilation operators reads

uα =
1√

2mα

∑
s

e(s)
α

bs + b†s√
ωs

. (79)

In the context of phonons (and other problems) it is normally more conve-

nient to use the eigenvectors e
(s)
α in the form of the plane waves rather than

sines/cosines. A minor issue arises then with the fact that the plane waves
are essentially complex, while our treatment so far was implying that the
eigenvectors are real. An important circumstance that allows us to gener-

alize our treatment to the complex eigenvectors is that if |es〉 = e
(s)
α is a

complex eigenvector of a real Hermitian matrix, then its complex conjugate,

|e∗s〉 =
[
e

(s)
α

]∗
, has to be a different complex eigenvector, |e∗s〉 ≡ |es′〉, with the

17



same eigenvalue, meaning that the real and imaginary parts—respectively,
|es1〉 and |es2〉—of the vector |es〉 are two real eigenvectors with the same
eigenvalue. We have

|es〉 =
|es1〉+ i|es2〉√

2
, |es′〉 =

|es1〉 − i|es2〉√
2

, (80)

|es1〉 =
|es〉+ |es′〉√

2
, |es2〉 =

|es〉 − |es′〉
i
√

2
. (81)

Then, considering our original expression (79) in terms of the real vectors,
where we have

|es1〉
(
bs1 + b†s1

)
+ |es2〉

(
bs2 + b†s2

)
, (82)

we observe that if we introduce new annihilation operators by the canonical
transformation

bs =
bs1 − ibs2√

2
, bs′ =

bs1 + ibs2√
2

, (83)

implying

bs1 =
bs + bs′√

2
, bs2 =

bs′ − bs
i
√

2
, (84)

then the expression (82) becomes

|es〉 bs + |es′〉 b†s + |es′〉 bs′ + |es〉 b†s′ ≡ |es〉 bs + |e∗s〉 b†s + |es′〉 bs′ + |e∗s′〉 b
†
s′ .

This brings us to the generalization of (79) in the form

uα =
1√

2mα

∑
s

e
(s)
α bs +

[
e

(s)
α

]∗
b†s

√
ωs

. (85)

Now we have to adjust the above theory to phonons. We recall that the
structure of the displacement subscript is α ≡ (n, j, i), where the integer
vector n labels the cells, j labels the atoms in the basis, i = x, y, z labels
components of the displacement vector. The structure of the phonon sub-
script is s ≡ (g, ν), where g is the dimensionless wavevector8 and ν is the
branch subscript. Correspondingly, Eq. (85) now reads

unj =
1√

2Nmj

∑
νg

vjν(g) eig·n bνg + v∗jν(g) e−ig·n b†νg√
ων(g)

, (86)

8Working with g rather than with q renders expressions more compact.
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where vjν(g) and ων(g) are found by solving the eigenvector/eigenvalue
problem (19): ∑

i′j′

C̃ii
′

jj′(g) vi
′
j′ν(g) = ω2

ν(g)vijν(g) . (87)

By writing the square root of N in the denominator of (86) we fix the
normalization9 of the vectors vjν(g):∑

ij

(
vijν1(g)

)∗
vijν2(g) = δν1ν2 .

Thermal and zero-point fluctuations of atomic positions

The expectation values of the displacements are zero, 〈unj〉 = 0, because the
equilibrium statistics of non-interacting harmonic oscillators imply 〈bνg〉 =

〈b†νg〉 = 0. But the displacements do fluctuate.
The fluctuations of atomic positions can be characterized by the vari-

ances of the displacement vectors, 〈u2
nj〉. To evaluate this quantity, we take

into account that

〈bs1bs2〉 = 〈b†s1b
†
s2〉 = 0 , 〈b†s1bs2〉 = 〈b†s1bs1〉 δs1s2 ≡ 〈ns1〉 δs1s2 . (88)

Then, for the dispersion of the i-th component of unj we get

〈 (uinj)2〉 =
1

Nmj

∑
νg

|vijν(g)|2 n̄νg + 1/2

ων(g)

=
1

mj

∑
ν

∫
BZ

ddg

(2π)d
|vijν(g)|2 n̄νg + 1/2

ων(g)
. (89)

Here

n̄νg ≡ 〈nνg〉 =
1

eων(g)/T − 1
(90)

is the average phonon occupation number for the mode (ν,g).
A remarkable fact is that the dispersion (89) diverges at finite tempera-

tures in the dimensions d ≤ 2, and in d = 1 it diverges even in the ground
state! As is easily seen, the divergence is due to the acoustic modes. Indeed,
at small enough g, the frequency of the acoustic mode behaves as

ων(g) ∼ g (acoustic mode at g → 0) .

9Note that in the quantum case, as opposed to the classical one, the normalization of
the eigenvectors of the normal modes is not arbitrary.
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At any finite temperature, we also have

n̄νg ≈
T

ων(g)
∼ T

g
(acoustic mode at g → 0 , ων(g)� T ) .

We thus deal with the following long-wave divergence of the dispersion

〈 (uinj)2〉 ∼ [non-singular part] +T

∫ cutoff

0

dg

g3−d → ∞ (d ≤ 2 , T > 0) ,

〈 (uinj)2〉 ∼ [non-singular part] +

∫ cutoff

0

dg

g
→ ∞ (d = 1 , T = 0) .

These divergencies imply that:

(i) There is no qualitative difference between solid and liquid in 1D.

(ii) In 2D at finite T, there are no crystals in the sense of the definition
based on spatially periodic profiles of density and other observables.10

Under the conditions of divergence of the variance of the displacements,
we need to resort to a more delicate characteristic of fluctuations. Namely,
the variance of the distance between two atoms (of the same sort j, for the
sake of simplicity of the expressions):

〈 (Rn1j −Rn2j)
2〉 =

(
R

(0)
n1j
−R

(0)
n2j

)2
+ 〈 (un1j − un2j)

2〉 .

Here we get

〈 (uin1j − u
i
n2j)

2〉 =
1

mj

∑
ν

∫
BZ

ddg

(2π)d

∣∣∣eig·(n1−n2) − 1
∣∣∣2 |vijν(g)|2 n̄νg + 1/2

ων(g)
.

(91)
This expression is not divergent because

|eig·(n1−n2) − 1|2 → |g · (n1 − n2)|2 at |g · (n1 − n2)| � 1.

At |n1−n2| ∼ 1 the behavior of the r.h.s. of (91) is essentially the same in all
dimensions, showing that the problem with divergences in low dimensions
does not affect the fluctuations of the relative positions of the atoms at the
microscopic scales.11 Clearly, considering (91) as a function of |n1−n2|, we

10In 2D at T > 0, one defines the solid as a state with topological order meaning the
existence of cells labeled with an integer vector n. Such a state features shear rigidity and
thus is distinctively different from liquid.

11And this is why we can speak of the topological order in 2D.
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get the divergent behavior at |n1−n2| → ∞ in all the cases where 〈 (uinj)2〉
diverges. In those cases, and important quantity is the correlation radius rc
defined as rc ∼ |Tnc |, where√

〈 (uincj − u
i
0j)

2〉 ∼ a ,

with a the period of the lattice. The correlation radius is the distance at
which the crystal order is destroyed. In the context of the Bragg diffraction,
1/rc yields the typical width of the Bragg peaks in 1D and 2D (T > 0).
Note that the Bragg peaks do not broaden in 3D; they get only weaker with
increasing temperature.—See the next section.

Debye–Waller factor

The effective Hamiltonian of interaction of a neutron with nuclei of a
crystal reads12

Uint =
∑
nj

fj δ(r−Rnj) , (92)

where fj is the effective interaction constant for the j-th atom of the basis,
r is the coordinate of the neutron,

Rnj = Tn + R
(0)
j + unj (93)

is the coordinate of the j-th atom in the n-th cell, R
(0)
j is the position of

the j-th atom in the cell n = 0. The matrix element Mkk′ for the elastic
scattering of the neutron with momentum k into the state with momentum
k′ is (q = k′ − k)

Mkk′ =

∫
d3r e−iq·r 〈 crystal |

∑
nj

fj δ(r−Rnj) | crystal 〉 . (94)

Here | crystal 〉 is a representative state of the system.13 The integration
over r removes the delta-functions, provided the integration is done before

12The small parameter controlling the accuracy of this effective description is the ratio
of the typical size of the nucleus to the de Broglie wavelength of the neutron.

13In view of the macroscopicity of the system, instead of averaging the final answer
for the scattering probability over the Gibbs distribution we simply take one repre-
sentative state of the system. For such a state, the quantum-mechanical expectation
value of a typical operator is equal to the thermodynamical average of this operator:
〈 crystal |(. . .)| crystal 〉 = 〈 (. . .) 〉.
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(and inside) the averaging:

Mkk′ =
∑
nj

fj 〈 e−iq·Rnj 〉 . (95)

With (93) we then have

Mkk′ =
∑
nj

fj e−iq·Tn e−iq·R
(0)
j 〈 e−iq·unj 〉 . (96)

All the relevant information about thermal fluctuations of the atomic posi-
tions is encoded in the average

FDW
j (q) = 〈 e−iq·unj 〉 ≡ 〈 e−iq·uj 〉 , (97)

known as the Debye–Waller factor. Because of translation invariance, it
depends only on j. The expression forMkk′ acquires the form of the standard
Bragg sum

Mkk′ = S(q)
∑
n

e−iq·Tn ,

with the amplitude (structure factor) given by

S(q) =
∑
j

fj F
DW
j (q) e−iq·R

(0)
j .

Hence, the role of thermal fluctuations reduces to renormalizing the effective
coupling constants fj by corresponding Debye–Waller factors:

fj → fj F
DW
j (q) .

Calculating Debye–Waller factors and other averages: Wick’s theorem

How do we calculate the Debye–Waller factors? We rely on the gen-
eral theorem of quantum statistics—the so-called Wick’s theorem—dealing
with averaging of quantities that are linear combinations of creation and
annihilation operators,

A = α1b
(±)
1 + α2b

(±)
2 + α3b

(±)
3 + . . . , (98)

over the Gibbs distribution (or just the ground state) of independent har-
monic oscillators, or, equivalently, bosonic modes. In the expression (98),
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αj ’s are constant coefficients, while b
(+)
j ≡ b†j and b

(−)
j ≡ bj . The Wick’s the-

orem states that (i) the average of a product of an odd number of type-(98)
operators is zero (m is integer),

〈A1A2 · · ·A2m+1 〉 = 0 ,

and (ii) the average of a product of an even number of type-(98) operators
decomposes into the sum of products of pairwise averages by the following
rule

〈A1A2 · · ·A2m 〉 = 〈A1A2 〉〈A3A4 〉 · · · 〈A2m−1A2m 〉+

+ all similar terms with alternative pairings .

For example,

〈A1A2A3A4 〉 = 〈A1A2 〉〈A3A4 〉 + 〈A1A3 〉〈A2A4 〉 + 〈A1A4 〉〈A2A3 〉 .

The pairwise averages are readily calculated by the rules (88), Eq. (89)
serving as a typical example. Hence, the Wick’s theorem solves the problem
of evaluating the averages of polynomials of type-(98) operators.

The Wick’s theorem implies the following elegant formula for a type-(98)
operator:

〈 eA 〉 = e〈A
2 〉/2 . (99)

To see that, expand both the l.h.s and the r.h.s. into the Taylor series and
observe that, within each order of expansion, the r.h.s. corresponds to the
Wick’s theorem applied to the l.h.s.

Equation (99) immediately solves the problem of evaluating the Debye–
Waller factor, reducing it to the previously obtained result (89):

FDW
j (q) = 〈 e−iq·uj 〉 = exp

[
−q

2

2

〈(
u

(q)
j

)2
〉]

. (100)

Here u
(q)
j is the component of the vector uj along the direction q/q.

Debye–Waller factor and the Mössbauer effect

If a nucleus of a free atom emits/absorbs a gamma ray, it experiences a
recoil due to the conservation laws. As a result, the resonant frequencies in
the emission and absorption processes are slightly different from each other.
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Even this slight mismatch proves to be fatal for applications in which tiny
shifts of the resonant gamma radiation are used to extract the information
about the environment of a given atom. A remarkable fact, however, is that
in a 3D crystal there is a finite probability to emit/absorb a gamma ray
purely elastically—i.e. without emitting or absorbing phonons. This is the
so-called Mössbauer effect.

Consider the Mössbauer effect in the emission process. The effective
interaction Hamiltonian reads (we do not care about the coupling constant)

Hint ∝
∑
k,λ

eik·u0f †k,λa0 + H.c. , (101)

where f †k,λ creates a photon with the wavevector k and polarization λ, a0

annihilates the excited state of the nucleus, and u0 is the operator of dis-
placement of the excited nucleus. With the Hamiltonian (101) we see that
the matrix element for the recoilless Mössbauer emission is proportional to
the Debye–Waller factor

〈 eik·u0 〉 = exp

[
−k

2

2

〈(
u

(k)
0

)2
〉]

.

The fact that the Debye-Waller factor gets progressively lower with increas-
ing temperature should not be interpreted as if the lifetime of the excited
nuclei increases. This simply means that while the fraction of recoilless
events gets smaller, the fraction of the processes accompanied by absorp-
tion/emission of phonons increases. In this respect very instructive is the
following relation.∑

f 6=i

∣∣∣〈f | eik·u0 |i〉
∣∣∣2 = 1−

∣∣∣〈i| eik·u0 |i〉
∣∣∣2 . (102)

Here |i〉 and |f〉 are, respectively, the initial and final states of phonon sub-
system, so that the l.h.s. is the sum of squares of matrix elements for all
inelastic processes (note f 6= i), while the Debye-Waller factor in the r.h.s.
characterizes the rate of elastic processes. The proof of (102) is simple. By
the completeness relation ∑

f

|f〉〈f | = 1

we can write ∑
f

e−ik·u0 |f〉〈f | eik·u0 = e−ik·u0 eik·u0 = 1 .
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Hence

1 =
∑
f

〈i| e−ik·u0 |f〉〈f | eik·u0 |i〉 =
∑
f 6=i
〈i| e−ik·u0 |f〉〈f | eik·u0 |i〉+

+ 〈i| e−ik·u0 |i〉〈i| eik·u0 |i〉 =
∑
f 6=i

∣∣∣〈f | eik·u0 |i〉
∣∣∣2 +

∣∣∣〈i| eik·u0 |i〉
∣∣∣2 .
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