/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Mike Parks (SNL) ------------------------------------------------------------------------- */ #include "math.h" #include "stdlib.h" #include "string.h" #include "pair_peri_lps.h" #include "atom.h" #include "domain.h" #include "lattice.h" #include "force.h" #include "update.h" #include "modify.h" #include "fix.h" #include "fix_peri_neigh.h" #include "comm.h" #include "neighbor.h" #include "neigh_list.h" #include "memory.h" #include "error.h" #include "update.h" using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ PairPeriLPS::PairPeriLPS(LAMMPS *lmp) : Pair(lmp) { for (int i = 0; i < 6; i++) virial[i] = 0.0; no_virial_fdotr_compute = 1; ifix_peri = -1; nmax = 0; s0_new = NULL; theta = NULL; bulkmodulus = NULL; shearmodulus = NULL; s00 = alpha = NULL; cut = NULL; // set comm size needed by this Pair // comm_reverse not needed comm_forward = 1; // for passing dilatation (theta) } /* ---------------------------------------------------------------------- */ PairPeriLPS::~PairPeriLPS() { if (ifix_peri >= 0) modify->delete_fix("PERI_NEIGH"); if (allocated) { memory->destroy(setflag); memory->destroy(cutsq); memory->destroy(bulkmodulus); memory->destroy(shearmodulus); memory->destroy(s00); memory->destroy(alpha); memory->destroy(cut); memory->destroy(theta); memory->destroy(s0_new); } } /* ---------------------------------------------------------------------- */ void PairPeriLPS::compute(int eflag, int vflag) { int i,j,ii,jj,inum,jnum,itype,jtype; double xtmp,ytmp,ztmp,delx,dely,delz; double xtmp0,ytmp0,ztmp0,delx0,dely0,delz0,rsq0; double rsq,r,dr,dr1,deltaed,rk,evdwl,fpair,fbond,fbondViscoElastic,fbondFinal; int *ilist,*jlist,*numneigh,**firstneigh; double d_ij,delta,stretch; evdwl = 0.0; if (eflag || vflag) ev_setup(eflag,vflag); else evflag = vflag_fdotr = eflag_global = eflag_atom = 0; double **f = atom->f; double **x = atom->x; int *type = atom->type; int nlocal = atom->nlocal; double *vfrac = atom->vfrac; double *s0 = atom->s0; double **x0 = atom->x0; double **r0 = ((FixPeriNeigh *) modify->fix[ifix_peri])->r0; double **r1 = ((FixPeriNeigh *) modify->fix[ifix_peri])->r1; //NEW int **partner = ((FixPeriNeigh *) modify->fix[ifix_peri])->partner; int *npartner = ((FixPeriNeigh *) modify->fix[ifix_peri])->npartner; double *wvolume = ((FixPeriNeigh *) modify->fix[ifix_peri])->wvolume; // lc = lattice constant // init_style guarantees it's the same in x, y, and z double lc = domain->lattice->xlattice; double half_lc = 0.5*lc; double vfrac_scale = 1.0; // short-range forces int newton_pair = force->newton_pair; int periodic = domain->xperiodic || domain->yperiodic || domain->zperiodic; inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // loop over neighbors of my atoms // need minimg() for x0 difference since not ghosted for (ii = 0; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; xtmp0 = x0[i][0]; ytmp0 = x0[i][1]; ztmp0 = x0[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; delx0 = xtmp0 - x0[j][0]; dely0 = ytmp0 - x0[j][1]; delz0 = ztmp0 - x0[j][2]; if (periodic) domain->minimum_image(delx0,dely0,delz0); rsq0 = delx0*delx0 + dely0*dely0 + delz0*delz0; jtype = type[j]; r = sqrt(rsq); // short-range interaction distance based on initial particle position // 0.9 and 1.35 are constants d_ij = MIN(0.9*sqrt(rsq0),1.35*lc); // short-range contact forces // 15 is constant taken from the EMU Theory Manual // Silling, 12 May 2005, p 18 if (r < d_ij) { dr = r - d_ij; // kshort based upon short-range force constant // of the bond-based theory used in PMB model double kshort = (15.0 * 18.0 * bulkmodulus[itype][itype]) / (3.141592653589793 * cutsq[itype][jtype] * cutsq[itype][jtype]); rk = (kshort * vfrac[j]) * (dr / cut[itype][jtype]); if (r > 0.0) fpair = -(rk/r); else fpair = 0.0; f[i][0] += delx*fpair; f[i][1] += dely*fpair; f[i][2] += delz*fpair; if (newton_pair || j < nlocal) { f[j][0] -= delx*fpair; f[j][1] -= dely*fpair; f[j][2] -= delz*fpair; } if (eflag) evdwl = 0.5*rk*dr; if (evflag) ev_tally(i,j,nlocal,newton_pair,evdwl,0.0, fpair*vfrac[i],delx,dely,delz); } } } // grow bond forces array if necessary if (atom->nmax > nmax) { memory->destroy(s0_new); memory->destroy(theta); nmax = atom->nmax; memory->create(s0_new,nmax,"pair:s0_new"); memory->create(theta,nmax,"pair:theta"); } // Compute the dilatation on each particle compute_dilatation(); // communicate dilatation (theta) of each particle comm->forward_comm_pair(this); // communicate wighted volume (wvolume) upon every reneighbor if (neighbor->ago == 0) comm->forward_comm_fix(modify->fix[ifix_peri]); // Volume-dependent part of the energy if (eflag) { for (i = 0; i < nlocal; i++) { itype = type[i]; if (eflag_global) eng_vdwl += 0.5 * bulkmodulus[itype][itype] * (theta[i] * theta[i]); if (eflag_atom) eatom[i] += 0.5 * bulkmodulus[itype][itype] * (theta[i] * theta[i]); } } // loop over my particles and their partners // partner list contains all bond partners, so I-J appears twice // if bond already broken, skip this partner // first = true if this is first neighbor of particle i bool first; double omega_minus, omega_plus; for (i = 0; i < nlocal; i++) { xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; xtmp0 = x0[i][0]; ytmp0 = x0[i][1]; ztmp0 = x0[i][2]; itype = type[i]; jnum = npartner[i]; first = true; for (jj = 0; jj < jnum; jj++) { if (partner[i][jj] == 0) continue; j = atom->map(partner[i][jj]); // check if lost a partner without first breaking bond if (j < 0) { partner[i][jj] = 0; continue; } // compute force density, add to PD equation of motion delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; if (periodic) domain->minimum_image(delx,dely,delz); rsq = delx*delx + dely*dely + delz*delz; delx0 = xtmp0 - x0[j][0]; dely0 = ytmp0 - x0[j][1]; delz0 = ztmp0 - x0[j][2]; if (periodic) domain->minimum_image(delx0,dely0,delz0); jtype = type[j]; delta = cut[itype][jtype]; r = sqrt(rsq); dr = r - r0[i][jj]; // avoid roundoff errors if (fabs(dr) < 2.2204e-016) dr = 0.0; // scale vfrac[j] if particle j near the horizon if ((fabs(r0[i][jj] - delta)) <= half_lc) vfrac_scale = (-1.0/(2*half_lc))*(r0[i][jj]) + (1.0 + ((delta - half_lc)/(2*half_lc) ) ); else vfrac_scale = 1.0; omega_plus = influence_function(-1.0*delx0,-1.0*dely0,-1.0*delz0); omega_minus = influence_function(delx0,dely0,delz0); rk = ( (3.0 * bulkmodulus[itype][itype]) - (5.0 * shearmodulus[itype][itype]) ) * vfrac[j] * vfrac_scale * ( (omega_plus * theta[i] / wvolume[i]) + ( omega_minus * theta[j] / wvolume[j] ) ) * r0[i][jj]; rk += 15.0 * ( shearmodulus[itype][itype] * vfrac[j] * vfrac_scale ) * ( (omega_plus / wvolume[i]) + (omega_minus / wvolume[j]) ) * dr; if (r > 0.0) fbond = -(rk/r); else fbond = 0.0; double deviatoric_extension = dr - (theta[i]* r0[i][jj] / 3.0); // e_d=e-e_i f[i][0] += delx*fbond; f[i][1] += dely*fbond; f[i][2] += delz*fbond; // since I-J is double counted, set newton off & use 1/2 factor and I,I if (eflag) evdwl = 0.5 * 15 * (shearmodulus[itype][itype]/wvolume[i]) * omega_plus*(deviatoric_extension * deviatoric_extension) * vfrac[j] * vfrac_scale; if (evflag) ev_tally(i,i,nlocal,0,0.5*evdwl,0.0, 0.5*fbond*vfrac[i],delx,dely,delz); // find stretch in bond I-J and break if necessary // use s0 from previous timestep // store current state r1[i][jj] = r; //New stretch = dr / r0[i][jj]; if (stretch > MIN(s0[i],s0[j])) partner[i][jj] = 0; // update s0 for next timestep if (first) s0_new[i] = s00[itype][jtype] - (alpha[itype][jtype] * stretch); else s0_new[i] = MAX(s0_new[i],s00[itype][jtype] - (alpha[itype][jtype] * stretch)); first = false; } } // store new s0 for (i = 0; i < nlocal; i++) s0[i] = s0_new[i]; } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairPeriLPS::allocate() { allocated = 1; int n = atom->ntypes; memory->create(setflag,n+1,n+1,"pair:setflag"); for (int i = 1; i <= n; i++) for (int j = i; j <= n; j++) setflag[i][j] = 0; memory->create(cutsq,n+1,n+1,"pair:cutsq"); memory->create(bulkmodulus,n+1,n+1,"pair:bulkmodulus"); memory->create(shearmodulus,n+1,n+1,"pair:shearmodulus"); memory->create(s00,n+1,n+1,"pair:s00"); memory->create(alpha,n+1,n+1,"pair:alpha"); memory->create(cut,n+1,n+1,"pair:cut"); } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairPeriLPS::settings(int narg, char **arg) { if (narg) error->all(FLERR,"Illegal pair_style command"); } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void PairPeriLPS::coeff(int narg, char **arg) { if (narg != 7) error->all(FLERR,"Incorrect args for pair coefficients"); // New 2 arguments if (!allocated) allocate(); int ilo,ihi,jlo,jhi; force->bounds(arg[0],atom->ntypes,ilo,ihi); force->bounds(arg[1],atom->ntypes,jlo,jhi); double bulkmodulus_one = atof(arg[2]); double shearmodulus_one = atof(arg[3]); double cut_one = atof(arg[4]); double s00_one = atof(arg[5]); double alpha_one = atof(arg[6]); int count = 0; for (int i = ilo; i <= ihi; i++) { for (int j = MAX(jlo,i); j <= jhi; j++) { bulkmodulus[i][j] = bulkmodulus_one; shearmodulus[i][j] = shearmodulus_one; cut[i][j] = cut_one; s00[i][j] = s00_one; alpha[i][j] = alpha_one; setflag[i][j] = 1; count++; } } if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients"); } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairPeriLPS::init_one(int i, int j) { if (setflag[i][j] == 0) error->all(FLERR,"All pair coeffs are not set"); bulkmodulus[j][i] = bulkmodulus[i][j]; shearmodulus[j][i] = shearmodulus[i][j]; s00[j][i] = s00[i][j]; alpha[j][i] = alpha[i][j]; cut[j][i] = cut[i][j]; return cut[i][j]; } /* ---------------------------------------------------------------------- init specific to this pair style ------------------------------------------------------------------------- */ void PairPeriLPS::init_style() { // error checks if (!atom->peri_flag) error->all(FLERR,"Pair style peri requires atom style peri"); if (atom->map_style == 0) error->all(FLERR,"Pair peri requires an atom map, see atom_modify"); if (domain->lattice == NULL) error->all(FLERR,"Pair peri requires a lattice be defined"); if (domain->lattice->xlattice != domain->lattice->ylattice || domain->lattice->xlattice != domain->lattice->zlattice || domain->lattice->ylattice != domain->lattice->zlattice) error->all(FLERR,"Pair peri lattice is not identical in x, y, and z"); // if first init, create Fix needed for storing fixed neighbors if (ifix_peri == -1) { char **fixarg = new char*[3]; fixarg[0] = (char *) "PERI_NEIGH"; fixarg[1] = (char *) "all"; fixarg[2] = (char *) "PERI_NEIGH"; modify->add_fix(3,fixarg); delete [] fixarg; } // find associated PERI_NEIGH fix that must exist // could have changed locations in fix list since created for (int i = 0; i < modify->nfix; i++) if (strcmp(modify->fix[i]->style,"PERI_NEIGH") == 0) ifix_peri = i; if (ifix_peri == -1) error->all(FLERR,"Fix peri neigh does not exist"); neighbor->request(this); } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairPeriLPS::write_restart(FILE *fp) { int i,j; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { fwrite(&setflag[i][j],sizeof(int),1,fp); if (setflag[i][j]) { fwrite(&bulkmodulus[i][j],sizeof(double),1,fp); fwrite(&shearmodulus[i][j],sizeof(double),1,fp); fwrite(&s00[i][j],sizeof(double),1,fp); fwrite(&alpha[i][j],sizeof(double),1,fp); fwrite(&cut[i][j],sizeof(double),1,fp); } } } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairPeriLPS::read_restart(FILE *fp) { allocate(); int i,j; int me = comm->me; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { if (me == 0) fread(&setflag[i][j],sizeof(int),1,fp); MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world); if (setflag[i][j]) { if (me == 0) { fread(&bulkmodulus[i][j],sizeof(double),1,fp); fread(&shearmodulus[i][j],sizeof(double),1,fp); fread(&s00[i][j],sizeof(double),1,fp); fread(&alpha[i][j],sizeof(double),1,fp); fread(&cut[i][j],sizeof(double),1,fp); } MPI_Bcast(&bulkmodulus[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&shearmodulus[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&s00[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&alpha[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&cut[i][j],1,MPI_DOUBLE,0,world); } } } /* ---------------------------------------------------------------------- */ double PairPeriLPS::single(int i, int j, int itype, int jtype, double rsq, double factor_coul, double factor_lj, double &fforce) { double delx0,dely0,delz0,rsq0; double d_ij,r,dr,rk,rkNew,vfrac_scale; //NEW: rknew double *vfrac = atom->vfrac; double **x0 = atom->x0; double **r0 = ((FixPeriNeigh *) modify->fix[ifix_peri])->r0; int **partner = ((FixPeriNeigh *) modify->fix[ifix_peri])->partner; int *npartner = ((FixPeriNeigh *) modify->fix[ifix_peri])->npartner; double *wvolume = ((FixPeriNeigh *) modify->fix[ifix_peri])->wvolume; double lc = domain->lattice->xlattice; double half_lc = 0.5*lc; double kshort; delx0 = x0[i][0] - x0[j][0]; dely0 = x0[i][1] - x0[j][1]; delz0 = x0[i][2] - x0[j][2]; int periodic = domain->xperiodic || domain->yperiodic || domain->zperiodic; if (periodic) domain->minimum_image(delx0,dely0,delz0); rsq0 = delx0*delx0 + dely0*dely0 + delz0*delz0; d_ij = MIN(0.9*sqrt(rsq0),1.35*lc); r = sqrt(rsq); double energy = 0.0; fforce = 0.0; if (r < d_ij) { dr = r - d_ij; // kshort resembles short-range force constant of bond-based theory in 3d kshort = (15.0 * 18.0 * bulkmodulus[itype][itype]) / ( 3.141592653589793 * cutsq[itype][jtype] * cutsq[itype][jtype]); rk = ( kshort * vfrac[j]) * (dr / sqrt(cutsq[itype][jtype])); if (r > 0.0) fforce += -(rk/r); energy += 0.5*rk*dr; } if (atom->nmax > nmax) { memory->destroy(theta); nmax = atom->nmax; memory->create(theta,nmax,"pair:theta"); } // Compute the dilatation on each particle compute_dilatation(); // communicate dilatation (theta) of each particle comm->forward_comm_pair(this); // communicate wighted volume (wvolume) upon every reneighbor if (neighbor->ago == 0) comm->forward_comm_fix(modify->fix[ifix_peri]); double omega_plus, omega_minus; int jnum = npartner[i]; for (int jj = 0; jj < jnum; jj++) { if (partner[i][jj] == 0) continue; if (j < 0) continue; if (j == atom->map(partner[i][jj])) { dr = r - r0[i][jj]; if (fabs(dr) < 2.2204e-016) dr = 0.0; // scale vfrac[j] if particle j near the horizon if ( (fabs(r0[i][jj] - sqrt(cutsq[itype][jtype]))) <= half_lc) vfrac_scale = (-1.0/(2*half_lc))*(r0[i][jj]) + (1.0 + ((sqrt(cutsq[itype][jtype]) - half_lc)/(2*half_lc))); else vfrac_scale = 1.0; omega_plus = influence_function(-1.0*delx0,-1.0*dely0,-1.0*delz0); omega_minus = influence_function(delx0,dely0,delz0); rk = (3.0* bulkmodulus[itype][itype] -5.0 * shearmodulus[itype][itype]) * vfrac[j] * vfrac_scale * ( (omega_plus * theta[i] / wvolume[i]) + (omega_minus * theta[j] / wvolume[j])) * r0[i][jj]; rk += 15.0 * ( shearmodulus[itype][itype] * vfrac[j] * vfrac_scale ) * ( (omega_plus / wvolume[i]) + (omega_minus / wvolume[j]) ) * dr; double deviatoric_extension = dr - (theta[i]* r0[i][jj] / 3.0); // e_d=e-e_i energy += 0.5 * 15 * (shearmodulus[itype][itype]/wvolume[i]) * omega_plus * ( dr - theta[i]* r0[i][jj] / 3.0 ) * ( dr - theta[i]* r0[i][jj] / 3.0 ) * vfrac[j] * vfrac_scale; } } return energy; } /* ---------------------------------------------------------------------- memory usage of local atom-based arrays ------------------------------------------------------------------------- */ double PairPeriLPS::memory_usage() { double bytes = 2 * nmax * sizeof(double); return bytes; } /* ---------------------------------------------------------------------- influence function definition ------------------------------------------------------------------------- */ double PairPeriLPS::influence_function(double xi_x, double xi_y, double xi_z) { double r = sqrt(xi_x*xi_x + xi_y*xi_y + xi_z*xi_z); double omega; if (fabs(r) < 2.2204e-016) error->one(FLERR,"Divide by 0 in influence function of pair peri/lps"); omega = 1.0/r; return omega; } /* ---------------------------------------------------------------------- */ void PairPeriLPS::compute_dilatation() { int i,j,jj,jnum,itype,jtype; double xtmp,ytmp,ztmp,delx,dely,delz; double xtmp0,ytmp0,ztmp0,delx0,dely0,delz0; double rsq,r,dr; double delta; double **x = atom->x; int *type = atom->type; double **x0 = atom->x0; int nlocal = atom->nlocal; double *vfrac = atom->vfrac; double vfrac_scale = 1.0; double lc = domain->lattice->xlattice; double half_lc = 0.5*lc; double **r0 = ((FixPeriNeigh *) modify->fix[ifix_peri])->r0; int **partner = ((FixPeriNeigh *) modify->fix[ifix_peri])->partner; int *npartner = ((FixPeriNeigh *) modify->fix[ifix_peri])->npartner; double *wvolume = ((FixPeriNeigh *) modify->fix[ifix_peri])->wvolume; int periodic = domain->xperiodic || domain->yperiodic || domain->zperiodic; // compute the dilatation theta for (i = 0; i < nlocal; i++) { xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; xtmp0 = x0[i][0]; ytmp0 = x0[i][1]; ztmp0 = x0[i][2]; jnum = npartner[i]; theta[i] = 0.0; itype = type[i]; for (jj = 0; jj < jnum; jj++) { // if bond already broken, skip this partner if (partner[i][jj] == 0) continue; // Look up local index of this partner particle j = atom->map(partner[i][jj]); // Skip if particle is "lost" if (j < 0) continue; // Compute force density and add to PD equation of motion delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; if (periodic) domain->minimum_image(delx,dely,delz); rsq = delx*delx + dely*dely + delz*delz; delx0 = xtmp0 - x0[j][0]; dely0 = ytmp0 - x0[j][1]; delz0 = ztmp0 - x0[j][2]; if (periodic) domain->minimum_image(delx0,dely0,delz0); r = sqrt(rsq); dr = r - r0[i][jj]; if (fabs(dr) < 2.2204e-016) dr = 0.0; jtype = type[j]; delta = cut[itype][jtype]; // scale vfrac[j] if particle j near the horizon if ((fabs(r0[i][jj] - delta)) <= half_lc) vfrac_scale = (-1.0/(2*half_lc))*(r0[i][jj]) + (1.0 + ((delta - half_lc)/(2*half_lc) ) ); else vfrac_scale = 1.0; theta[i] += influence_function(delx0, dely0, delz0) * r0[i][jj] * dr * vfrac[j] * vfrac_scale; } // if wvolume[i] is zero, then particle i has no bonds // therefore, the dilatation is set to if (wvolume[i] != 0.0) theta[i] = (3.0/wvolume[i]) * theta[i]; else theta[i] = 0; } } /* ---------------------------------------------------------------------- communication routines ---------------------------------------------------------------------- */ int PairPeriLPS::pack_comm(int n, int *list, double *buf, int pbc_flag, int *pbc) { int i,j,m; m = 0; for (i = 0; i < n; i++) { j = list[i]; buf[m++] = theta[j]; } return 1; } /* ---------------------------------------------------------------------- */ void PairPeriLPS::unpack_comm(int n, int first, double *buf) { int i,m,last; m = 0; last = first + n; for (i = first; i < last; i++) { theta[i] = buf[m++]; } }