/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Andrew Jewett (jewett.aij at g mail) ------------------------------------------------------------------------- */ #ifdef DIHEDRAL_CLASS DihedralStyle(table,DihedralTable) #else #ifndef LMP_DIHEDRAL_TABLE_H #define LMP_DIHEDRAL_TABLE_H #include #include #include "domain.h" #include "dihedral.h" using namespace std; namespace LAMMPS_NS { class DihedralTable : public Dihedral { public: DihedralTable(class LAMMPS *); virtual ~DihedralTable(); virtual void compute(int, int); void settings(int, char **); void coeff(int, char **); void write_restart(FILE *); void read_restart(FILE *); double single(int type, int i1, int i2, int i3, int i4); protected: int tabstyle,tablength; // double *phi0; <- equilibrium angles not supported struct Table { int ninput; //double phi0; <-equilibrium angles not supported int f_unspecified; // boolean (but MPI does not like type "bool") int use_degrees; // boolean (but MPI does not like type "bool") double *phifile,*efile,*ffile; double *e2file,*f2file; double delta,invdelta,deltasq6; double *phi,*e,*de,*f,*df,*e2,*f2; }; int ntables; Table *tables; int *tabindex; void allocate(); void null_table(Table *); void free_table(Table *); void read_table(Table *, char *, char *); void bcast_table(Table *); void spline_table(Table *); void compute_table(Table *); void param_extract(Table *, char *); // -------------------------------------------- // ------------ inline functions -------------- // -------------------------------------------- // ----------------------------------------------------------- // uf_lookup() // quickly calculate the potential u and force f at angle x, // using the internal tables tb->e and tb->f (evenly spaced) // ----------------------------------------------------------- enum{LINEAR,SPLINE}; inline void uf_lookup(int type, double x, double &u, double &f) { Table *tb = &tables[tabindex[type]]; double x_over_delta = x*tb->invdelta; int i = static_cast (x_over_delta); double a; double b = x_over_delta - i; // Apply periodic boundary conditions to indices i and i+1 if (i >= tablength) i -= tablength; int ip1 = i+1; if (ip1 >= tablength) ip1 -= tablength; switch(tabstyle) { case LINEAR: u = tb->e[i] + b * tb->de[i]; f = tb->f[i] + b * tb->df[i]; //<--works even if tb->f_unspecified==true break; case SPLINE: a = 1.0 - b; u = a * tb->e[i] + b * tb->e[ip1] + ((a*a*a-a)*tb->e2[i] + (b*b*b-b)*tb->e2[ip1]) * tb->deltasq6; if (tb->f_unspecified) //Formula below taken from equation3.3.5 of "numerical recipes in c" //"f"=-derivative of e with respect to x (or "phi" in this case) f = (tb->e[i]-tb->e[ip1])*tb->invdelta + ((3.0*a*a-1.0)*tb->e2[i]+(1.0-3.0*b*b)*tb->e2[ip1])*tb->delta/6.0; else f = a * tb->f[i] + b * tb->f[ip1] + ((a*a*a-a)*tb->f2[i] + (b*b*b-b)*tb->f2[ip1]) * tb->deltasq6; break; } // switch(tabstyle) } // uf_lookup() // ---------------------------------------------------------- // u_lookup() // quickly calculate the potential u at angle x using tb->e //----------------------------------------------------------- inline void u_lookup(int type, double x, double &u) { Table *tb = &tables[tabindex[type]]; int N = tablength; // i = static_cast ((x - tb->lo) * tb->invdelta); <-general version double x_over_delta = x*tb->invdelta; int i = static_cast (x_over_delta); double b = x_over_delta - i; // Apply periodic boundary conditions to indices i and i+1 if (i >= N) i -= N; int ip1 = i+1; if (ip1 >= N) ip1 -= N; if (tabstyle == LINEAR) { u = tb->e[i] + b * tb->de[i]; } else if (tabstyle == SPLINE) { double a = 1.0 - b; u = a * tb->e[i] + b * tb->e[ip1] + ((a*a*a-a)*tb->e2[i] + (b*b*b-b)*tb->e2[ip1]) * tb->deltasq6; } } // u_lookup() // Pre-allocated strings to store file names for debugging splines. (One day // I would really like to rewrite everything and use C++ strings instead.) static const int MAXLINE=2048; char checkU_fname[MAXLINE]; char checkF_fname[MAXLINE]; }; //class DihedralTable // ------------------------------------------------------------------------ // The following auxiliary functions were left out of the // DihedralTable class either because they require template parameters, // or because they have nothing to do with dihedral angles. // ------------------------------------------------------------------------ namespace DIHEDRAL_TABLE_NS { static const double PI = 3.1415926535897931; static const double TWOPI = 6.2831853071795862; // Determine the array of "y2" parameters of a cyclic spline from its control // points at positions x[] and y[]. (spline() must be invoked before splint()) // The x[] positions should be sorted in order and not exceed period. void cyc_spline(double const *xa, double const *ya, int n, double period, double *y2a); // Evaluate a cyclic spline at position x with n control points at xa[], ya[], // (The y2a array must be calculated using cyc_spline() above in advance.) // x (and all the xa[] positions) should lie in the range from 0 to period. // (Typically period = 2*PI, but this is optional.) double cyc_splint(double const *xa, double const *ya, double const *y2a, int n, double period, double x); // Evaluate the deriviative of a cyclic spline at position x: double cyc_splintD(double const *xa, double const *ya, double const *y2a, int n, double period, double x); // ----------------------------------------------------------- // ---- some simple vector operations are defined below. ---- // ----------------------------------------------------------- // --- g_dim --- As elsewhere in the LAMMPS code, coordinates here are // represented as entries in an array, not as named variables "x" "y" "z". // (I like this style.) In this spirit, the vector operations here are // defined for vectors of arbitrary size. For this to work, the number // of dimensions, "g_dim", must be known at compile time: const int g_dim = 3; // In LAMMPS at least, this constant is always 3, and is only used inside // the dihedral code here. (It should not conflict with 2-D simulations.) // Note: Compiler optimizations should eliminate any performance overhead // associated with loops like "for (int i=0; i inline _Real DotProduct(_Real const *A, _Real const *B) { _Real AdotB = 0.0; for (int d=0; d < g_dim; ++d) AdotB += A[d]*B[d]; return AdotB; } // Normalize() divides the components of the vector "v" by it's length. // Normalize() silently ignores divide-by-zero errors but does not // crash. (If "v" has length 0, then we replace v with the unit vector in // an arbitrary direction,(1,0,...).) // It returns the length of v (useful for checking if the operation succeeded). template inline _Real Normalize(_Real *v) { _Real length = sqrt(DotProduct(v,v)); if (length != 0.0) { _Real one_over_length = 1.0 / length; for (int d=0; d < g_dim; ++d) v[d] *= one_over_length; } else { v[0] = 1.0; for (int d=1; d < g_dim; ++d) v[d] = 0.0; } return length; } // CrossProduct(A,B,dest) computes the cross-product (A x B) // and stores the result in "dest". template inline void CrossProduct(_Real const *A, _Real const *B, _Real *dest) { dest[0] = A[1]*B[2] - A[2]*B[1]; dest[1] = A[2]*B[0] - A[0]*B[2]; dest[2] = A[0]*B[1] - A[1]*B[0]; } // -------------------------------------------- // ------- Calculate the dihedral angle ------- // -------------------------------------------- inline double Phi(double const *x1, //array holding x,y,z coords atom 1 double const *x2, // : : : : 2 double const *x3, // : : : : 3 double const *x4, // : : : : 4 Domain *domain, //<-periodic boundary information // The following arrays are of doubles with g_dim elements. // (g_dim is a constant known at compile time, usually 3). // Their contents is calculated by this function. // Space for these vectors must be allocated in advance. // (This is not hidden internally because these vectors // may be needed outside the function, later on.) double *vb12, // will store x2-x1 double *vb23, // will store x3-x2 double *vb34, // will store x4-x3 double *n123, // will store normal to plane x1,x2,x3 double *n234) // will store normal to plane x2,x3,x4 { for (int d=0; d < g_dim; ++d) { vb12[d] = x2[d] - x1[d]; // 1st bond vb23[d] = x3[d] - x2[d]; // 2nd bond vb34[d] = x4[d] - x3[d]; // 3rd bond } //Consider periodic boundary conditions: domain->minimum_image(vb12[0],vb12[1],vb12[2]); domain->minimum_image(vb23[0],vb23[1],vb23[2]); domain->minimum_image(vb34[0],vb34[1],vb34[2]); //--- Compute the normal to the planes formed by atoms 1,2,3 and 2,3,4 --- CrossProduct(vb23, vb12, n123); // <- n123=vb23 x vb12 CrossProduct(vb23, vb34, n234); // <- n234=vb23 x vb34 Normalize(n123); Normalize(n234); double cos_phi = -DotProduct(n123, n234); if (cos_phi > 1.0) cos_phi = 1.0; else if (cos_phi < -1.0) cos_phi = -1.0; double phi = acos(cos_phi); if (DotProduct(n123, vb34) > 0.0) { phi = -phi; //(Note: Negative dihedral angles are possible only in 3-D.) phi += TWOPI; //<- This insure phi is always in the range 0 to 2*PI } return phi; } // DihedralTable::Phi() } // namespace DIHEDRAL_TABLE_NS } // namespace LAMMPS_NS #endif //#ifndef LMP_DIHEDRAL_TABLE_H #endif //#ifdef DIHEDRAL_CLASS ... #else