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Velocity Verlet algorithm for dissipative-particle-dynamics-based models of suspensions
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A velocity Verlet algorithm for velocity dependent forces is described for modeling a suspension of rigid
body inclusions. The rigid body motion is determined from the quaternion-based scheme of Omelyan@Comput.
Phys.12, 97 ~1998!#. An iterative method to determine angular velocity in a self-consistent fashion for this
quaternion-based algorithm is presented. This method is tested for the case of liquid water. We also describe
a method for evaluating the stress tensor for a system of rigid bodies that is consistent with the velocity Verlet
alogorithm. Results are compared to the constraint-based rattle algorithm of Anderson@J. Comput. Phys.52, 24
~1993!#. @S1063-651X~99!13203-3#

PACS number~s!: 47.11.1j
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I. INTRODUCTION

There has been recent interest in mesoscopic mode
complex fluids called dissipative particle dynamics~DPD!
that blend cellular automata ideas with molecular dynam
methods@1#. The original DPD algorithm utilized symmetr
properties such as conservation of mass, momentum,
Galilean invariance to obtain hydrodynamic behavior fo
system of ‘‘mesoscopic’’ particles which can be thought
as representing clusters of molecules or ‘‘lumps’’ of flui
Later modifications of the DPD algorithm resulted in a mo
rigorous formulation which was consistent with the fluctu
tion dissipation theorem@2#. Improvements to the tempera
ture behavior of the DPD algorithm were made by modific
tion of a stocastic forcing term and incorporating a veloc
Verlet algorithm which allowed a larger time step while st
producing a satisfactory temperature control@3#. An algo-
rithm for modeling the motion of arbitrarily shaped objec
subject to hydrodynamic interactions by DPD was sugges
by Koelman and Hoogerbrugge@4#. The rigid body is ap-
proximated by ‘‘freezing’’ a set of randomly placed particl
where the solid inclusion is located and updating their po
tion according to the Euler equations. The original DPD
gorithm used an Euler algorithm for updating the positions
free particles, and a leap frog algorithm for updating t
position of the rigid body. A motivation of this work was t
develop an efficient algorithm to update both the free p
ticles, and the rigid body position in a manner consist
with the velocity Verlet algorithm.

A commonly used velocity Verlet-based algorithm for u
dating the position of rigid bodies is the so called rattle
gorithm@5#. The rattle routine solves a set of constraint eq
tions that fix the relative positions of particles comprising t
rigid body by a relaxation method. Further, the stress ten
~from an atomic view! can be directly obtained from th
constraint forces calculated in the algorithm, and is co
pletely symmetric. While the rattle routine is of orderN2
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~where N is the number of particles in the inclusion! and,
hence, can be prohibitively slow for the case of modeling
motion of solid inclusions composed of large numbers
particles, it serves as an accurate benchmark to test o
algorithms.

In this Brief Report we show how the use of quaternio
to represent the orientation of such objects@6,7# can greatly
increase the computational efficiency of DPD simulatio
Quaternions provide a convenient way to represent the
entation of rigid objects, since, in contrast to a representa
in Euler angles, the transformations between body-fixed
laboratory coordinate reference frames contain no singu
ties when expressed as quaternions. First, we review the
velopment of the equations of motion for the quaternio
Next we indicate how to efficiently apply the velocity Verle
algorithm@8,9# to the quaternion equations@10#, and demon-
strate its use in the simulation of water. We then discuss
modifications of the algorithm needed to include the veloc
dependent dissipative forces in DPD simulations. A pro
dure for determining the rigid body’s contribution to th
stress tensor, consistent with the velocity Verlet algorithm
given and compared to that derived from the rattle routin

II. EQUATIONS OF MOTION

The equations of motion for the quaternions have be
discussed by several authors@7,11–13# with varying degrees
of completeness. Note that the explicit form for the mat
connecting the angular velocity of the object in the bod
fixed frame and the time derivatives of the quaternions is
treated with a uniform notation, so care must be taken w
comparing the elements of this matrix as presented by
ferent authors. For this reason, we present the developm
of the equations of motion in detail.

The quaternion parameters,x, h, j, andz for a individual
body are related to the Euler angles, as described by G
stein @14#, by @7#

x5cos~u/2!cos„~c1f!/2…,

h5sin~u/2!cos„~c2f!/2…,

j5sin~u/2!sin„~c2f!/2…,
3733
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z5cos~u/2!sin„~c1f!/2….

The quaternions satisfy the constraint

x21h21j21z251. ~1!

The connection of the quaternions with the description of
dynamics of the rigid object is through the matrix equati
that connects the time derivatives of the quaternions with
principal angular velocityvp ,

S j̇

ḣ

ż

ẋ

D 5S 2z, 2x, h, j

x, 2z, 2j, h

j, h, x, z

2h, j, 2z, x

D S vpx

vpy

vpz

0

D ~2!

The 434 matrix in this equation is orthogonal, so that t
transformation is singularity free.

Equations of motion for the quaternions are obtained
transforming the Euler equations for a rigid body that has
center of mass fixed, and is subject to torquesN, in the
principal frame,

v̇px5Nx /I x1vpyvpz~ I y2I z!/I x ,

v̇py5Ny /I y1vpzvpx~ I z2I x!/I y , ~3!

v̇pz5Nz /I z1vpxvpy~ I x2I z!/I z ,

into a quaternion form using the following sequence of m
trix operations. First, define matricesQ5(j,h,z,x)T and
W5(vpx ,vpy ,vpz ,0)T so that Eq.~2! becomes

Q̇a5 1
2 MabWb , ~4!

where repeated Greek indices are summed. Now

Wg52Mga
T Q̇a ~5!

and

Ẇg52Mga
T Q̈a12Ṁga

T Q̇a5Tg , ~6!

whereT is obtained from the right-hand side of Eq.~3! with
T450. This reduces to

Q̈b5 1
2 MbgTg2MbgṀga

T Q̇a , ~7!

which in turn simplifies to

Q̈b5 1
2 MbgTg2Qb~Q̇a

TQ̇a!, ~8!

when the conditionsQaQa51 andQaQ̇a50 are applied.
Note that the explicit form of the matrixM depends on the

order of the quaternion parameters in the matrixQ, and that
different authors have made different choices. The gen
form for the equations of motion forQa is independent of
this choice, but any given implementation must be interna
consistent.
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III. INTEGRATION OF THE EQUATIONS OF MOTION

The velocity Verlet algorithm@8# was initially introduced
to improve the numerical stability of the leap frog schem
@15#. The velocity Verlet algorithm has subsequently be
derived in a systematic way by means of a time-revers
partitioning of the Louville operator from Ref.@9#, and is
now widely used in simulations. It is an example of a seco
order symplectic integrator. It has the forms

x~dt !5x~0!1 ẋ~0!dt1
~dt2!

2
a~0!,

~9!

ẋ~dt !5 ẋ~0!1
dt

2
@a~0!1a~dt !#,

wherea(0) is the acceleration term evaluated usingx(0).
While the systematic derivation for translational degre

of freedom does not apply to rotation of a rigid body, o
can still propose a velocity-Verlet-like algorithm for th
quaternions. Here we adopt the scheme proposed by O
lyan @10#. The conditions on the quaternions,QaQa51 and
QaQ̇a50, are incorporated into the coefficientL of a con-
straint force with the formf a522LQa so that the integra-
tor for Qa takes the form

Qa~dt !5Qa~0!1Q̇a~0!dt

1
~dt !2

2
Q̈a~0!1 f a~0!

~dt !2

2
. ~10!

The conditionQa(dt)Qa(dt)51 leads to an explicit expres
sion for the coefficientL, namely,

~dt !2L512s1~dt !2/2

2A12s1~dt !22s2~dt !32~s32s1
2!~dt !4/4,

~11!

where the si terms are sums:s15Q̇a(0)Q̇a(0), s2

5Q̇a(0)Q̈a(0), and s35Q̈a(0)Q̈a(0). For small dt, L
→s2dt/2.

The updated values forQ̇a(dt) and Q̈a(dt) are obtained
using Eqs.~4! and~8!, with values forvpx , vpy , andvpz at
dt obtained by solving the Euler equations@Eqs.~3!#. Since
v̇pa is proportional tovpbvpg , it is necessary to iterate th
second member of Eq.~3! in order to obtain a self-consisten
result. Here we suggest a scheme that converges rapidly

First determine thev-independent part ofv̇pa(dt) which
involves just the torques@Eq. ~3!#, and call it Ta(dt). A
zeroth estimate forvpa(dt) is then

vpa
~0!~dt !5vpa~0!1

dt

2
@v̇pa~0!1Ta~dt !#. ~12!

This estimate forvpa(dt) is then used to estimate th
v-dependent part of the right-hand side of Eq.~3!, say
ga

(0)@v (0)(dt)#. The first estimate forvpa(dt) is then
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vpa
~1!~dt !5vpa

~0!~dt !1
dt

2
ga

~0! . ~13!

Now usevpa
(1)(dt) to constructga

(1)@v (1)(dt)#, and then to
generate the second estimate forvpa(dt):

vpa
~2!~dt !5vpa

~0!~dt !1
dt

2
ga

~1! . ~14!

This process can be continued until the desired level of c
vergence has been reached. We find that three iteration
sufficient for the examples discussed in Sec. IV. Equati
~10!–~14! constitute the ‘‘constraint force algorithm.’’

A related algorithm for integrating the equations of m
tion for quaternions, that is patterned after the original Ve
algorithm, was described by Svanberg@16#. His ‘‘mid-step
implicit algorithm’’ is similar to a velocity Verlet algorithm
that iteratesQ̇a and imposes theQaQa51 and QaQ̇a50
conditions by scaling. Omelyan@10# showed that a velocity
Verlet algorithm with scaling for quaternions is inferior
the version described above. This is illustrated by the
ample discussed next.

IV. ENERGY CONSERVATION FOR WATER

The constraint force algorithm has been used to integ
the equations of motion of 216 SPC/E@17# water molecules
at ambient conditions with a time stepdt52 fs. Results for a
20-ps interval are displayed in Fig. 1 as a ragged line w
circles. The quantitŷE& is the average energy for the 20-p
interval, andDE5E(t)2^E&. The sloping line with square
is for the same system using a ‘‘scaling algorithm,’’ where
velocity Verlet algorithm is used to integrateQa and Q̇a
with scaling to impose the constraints. Clearly this dem
strates the superiority of the constraint force algorithm o
the scaling algorithm. Note that a similar figure was given
Omelyan @10#. However, in this case the running avera
^E(t)& instead of̂ E& is used in the denominator. Use of th
running average can be misleading because it can ma
systematic drift in energy.

FIG. 1. The departures from the average energy for SPC/E w
over a 20-ps time interval are shown for the algorithm discus
above as a line with circles, and for an algorithm where the c
straints on the quaternions are imposed by scaling as a line
squares.
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V. DPD MOTION OF LARGE RIGID BODIES

Forces in DPD depend both on the relative positions a
velocities of particles. Hence a predictor velocity must
estimated to input into the force calculations. A reasona
approach to determine a predictor velocity could be based
an estimate of angular velocity att5dt/2 derived from the
quaternion equations of motion. However, to match m
closely the trajectories obtained from the rattle routine t
strictly follow the velocity Verlet algorithm, the predicto
velocity was simply based on the average velocity obtain
in moving from positionx(0) to x(dt) in Eq. ~9!. Otherwise,
the quaternion and rattle routines may not be consistent
cept in the limit of infinitesimally small time step.

The following modifications were then made to veloci
equation in Eq.~9!:

x̃̇S dt

2 D5 ẋ~0!1l dt a~0!'
x~dt !2x~0!

dt
~15!

and

ẋ~dt !5 ẋ~0!1
dt

2 Fa~0!1aXdt, x̃̇S dt

2 D CG ~16!

for the rattle routine and for the center of mass motion of
rigid body when using the quaternion-based algorithm.
addition Eq.~15! is used to determine the DPD forces b
tween particles for both the rattle and quaternion algorith
The final position and velocity of the solid body’s constitue
particles is derived from the quaternion equations. We u

l5 1
2 for our simulations. For further discussion of the effe

of varying l, see Ref.@3#.
While the rigid body contribution to the stress tensor

readily calculated from the rattle routine, the constra
forces contributions are not immediately obtained from o
quaternion algorithm. However, because the motion of
rigid body closely follows the trajectory obtained by th
rattle routine, we can approximate the constraint forces c
tributions by considering the velocity Verlet algorithm. L
ai(0) be the acceleration of particlei on the rigid body
which results from the sum of nonconstraint forces due to
particles ~including those in the rigid body! and the con-
straint forces from particles in the rigid body. That is,maW i

5FW i5FW nc
i1FW c

i , where the superscripts nc andc correspond
to nonconstraint forces and the constraint forces, resp
tively. Since all the nonconstraint forces are known, as w
as the velocity and positions of the particle att50 and t
5dt, the sum of the constraint forces on particlei can be
derived by assuming that particles follow the same time e
lution as that derived from the rattle routine using Eqs.~9!
and ~16!.

We now show that the sum of the constraint forces
each particle is all that is needed to determine correctly
constraint force contribution to the stress tensor. First,
contribution to the stress tensor from constraint forces is

sab
c 5 1

2 (
i , j

Fi j
c

a~rW i2rW j !b ~17!
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where i and j correspond to all particles in the rigid bod
Note thatFW c

i j 52FW c
j i , and that the sum of constraint force

on particle i due to particlesj is FW i
c5( jFW i j

c . We can then
write

sab
c 5 1

2 (
i , j

Fi j
c

a~rW i2rW j !b

5 1
2 (

i , j
Fi j

c
arW i b

2 1
2 (

i , j
Fi j

c
arW j b

5 1
2 (

i
Fi

c
arW i b

1 1
2 (

j
F j

c
arW j b

5(
i

Fi
c
arW i b

.

SinceFW nc is known andaW i can be estimated from Eqs.~9!

and ~16!, we can determineFW c to the accuracy of the algo
rithm, and determine contributions to the stress tensor fr
the two parts of the velocity Verlet algorithm. Comparin
stress tensor values between the rattle and our quater
algorithm, we found agreement to six significant figures a
further, that the stress tensor was symmetric to the s
ett

ett

R

m

ion
,
e

order. Indeed, for the time step used here,dt50.01, out re-
sults are consistent withO(dt3), the accuracy of the velocity
Verlet algorithm.

VI. CONCLUSION

We have developed and tested a velocity Verlet algorit
for a dissipative-particle-dynamics-based model describ
the motion of rigid body inclusions. A simple procedure f
calculating the stress tensor contribution from the rigid bo
which is consistent with the velocity Verlet algorithm wa
given. The velocity Verlet algorithm for DPD is less sens
tive to variation in time step size than the Euler algorith
presented in the original DPD papers, thus significantly i
proving numerical accuracy at little computational cost. A
though the original motivation of the paper was to impro
upon the original DPD algorithm such that the DPD partic
which represent a solvent and the rigid body motion
treated in a self-consistent fashion, the numerical techniq
presented in this paper should not be limited to DPD.
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