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Using molecular-dynamics computer simulations we investigate how in silica the glass transition and the
properties of the resulting glass depend on the cooling rate with which the sample is cooled. By coupling the
system to a heat bath with temperature Tb(t), we cool the system linearly in time, Tb(t)5Ti2gt , where g is
the cooling rate. In qualitative accordance with experiments, the temperature dependence of the density shows
a local maximum, which becomes more pronounced with decreasing cooling rate. We find that the glass
transition temperature Tg is in accordance with a logarithmic dependence on g . The enthalpy, density, and
thermal expansion coefficient for the glass at zero temperature decrease with decreasing g . We show that also
microscopic quantities, such as the radial distribution function, the bond-bond angle distribution function, the
coordination numbers, and the distribution function for the size of the rings, depend significantly on g . We
demonstrate that the cooling-rate dependence of these microscopic quantities is significantly more pronounced
than the one of macroscopic properties. Furthermore, we show that these microscopic quantities, as determined
from our simulation, are in good agreement with the ones measured in real experiments, thus demonstrating
that the used potential is a good model for silica glass. The vibrational spectrum of the system also shows a
significant dependence on the cooling rate and is in qualitative accordance with the one found in experiments.
Finally we investigate the properties of the system at finite temperatures in order to understand the microscopic
mechanism for the density anomaly. We show that the anomaly is related to a densification and subsequent
opening of the tetrahedral network when the temperature is decreased, whereas the distance between nearest
neighbors, i.e., the size of the tetrahedra, does not change significantly. @S0163-1829~96!03946-X#

I. INTRODUCTION

The last few years have shown that computer simulations
are a very effective tool to gain insight into the structure and
dynamics of supercooled liquids and glasses and that they
are therefore a very useful extension of experimental and
analytical investigations of such systems.1–3 The main reason
for the success of such simulations is based upon two facts:
First, that they allow one to investigate the structure of such
systems in full microscopic detail and, second, that for most
atomic systems many interesting dynamical phenomena oc-
cur on a time scale that is accessible to such simulations, i.e.,
happen between 10212 and 1027 s. It is this time range on
which much of the recent investigations on the dynamics of
supercooled liquids has been focused, since many of the pre-
dictions of the so-called mode-coupling theory, a theory that
attempts to describe the dynamics of supercooled liquids,4
can be tested well in this time window.
If in a supercooled liquid the temperature is decreased so

much that the relaxation times of the system exceed the time
scale of the experiment or of the computer simulation, the
system will fall out of equilibrium and undergo a glass tran-
sition, provided that it does not crystallize. Thus the resulting
glass is a nonequilibrium structure and its properties will in
general depend on its history of production such as, e.g., the
rate with which the sample was cooled or compressed. Such
dependences have indeed been found in experiments and in
computer simulations. For example, it has been demonstrated
in experiments5–8 and in computer simulations9–14 that the
density or the glass transition temperature depends on the
cooling rate. In some of these simulations also more micro-
scopic quantities, such as the radial distribution function or

the radius of gyration of polymers, have been investigated
and it was shown that also these quantities depend on the
cooling rate.11,13,14 In particular it was shown that certain
microscopic quantities show a much stronger dependence on
the cooling rate than macroscopic quantities ~e.g., in Refs. 13
and 14! which shows that it might be interesting to extend
the experiments in this direction also.
An important difference between computer simulations of

supercooled liquids and of glasses should be pointed out. In
the former type of studies one investigates the equilibrium
properties of the system. Thus a direct comparison between
the results from simulations and experiments is possible.
This is not the case for glasses, which are nonequilibrium
systems. As mentioned in the previous paragraph, the tem-
perature at which the system undergoes a glass transition will
depend on the time scale of the experiment. Since the time
scales of the computer simulation are many orders of mag-
nitude shorter than the ones of a typical laboratory experi-
ment, it follows that the glass transition temperature on the
computer is significantly higher than the glass transition tem-
perature one observes in the laboratory ~assuming all other
things to be equal!. ~An exception are experiments with ion
bombardment of glasses in which the cooling rates become
comparable to the ones used in computer simulations.15!
Thus, if the properties of glasses are investigated by com-
puter simulations, it is necessary to see how these properties
depend on the way the glass was produced before a compari-
son with real experiments can be made. Such a check is of
particular importance if one is interested in the microscopic
properties of the glass since, as we have mentioned above,
these quantities usually show a stronger dependence of the
production history than the macroscopic properties.
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The goal of the present paper is twofold. On the one hand,
we want to investigate how the cooling rate affects the mi-
croscopic properties of a strong glass former and compare
these dependences with the results of a similar simulation we
did for a fragile glass former.12–14 Second, we want to inves-
tigate whether the two-body potential that was recently pro-
posed by van Beest, Kramer, and van Santen16 ~BKS! for the
description of crystalline silica is able to reproduce also
structural properties of amorphous silica. Apart from being
of great importance in chemistry, geology, and industrial ap-
plications, silica is also a prototype of a network-forming
glass and thus it has been investigated extensively.17–27 Since
the BKS potential contains only two-body terms, it can be
implemented in a simulation much more efficiently than a
potential which contains also three-body terms. This in turn
allows one to make longer runs and thus to study the equi-
librium properties of the system at lower temperatures or to
investigate glasses which have a lower glass transition tem-
perature and are therefore more realistic.
The rest of the paper is organized as follows. In the next

section we give the details of the used potential as well as of
the simulation. Section III contains the results and consists of
three parts: In the first one we study the properties of the
system during the cooling procedure and therefore the glass
transition. In the second part we investigate how the proper-
ties of the glass depend on the cooling rate with which it was
produced, i.e., after having been cooled to zero temperature.
The third subsection is then devoted to investigate the system
at finite temperatures in order to relate the properties of the
system in its glass phase to the ones at finite temperature. In
the last section we then summarize and discuss the results.

II. MODEL AND DETAILS OF THE SIMULATION

As already mentioned in the Introduction, silica is a very
important glass former and thus there have been many inves-
tigations in which this system has been studied by means of
computer simulations. Thus it is not surprising that there are
many different types of potentials in use which seem to be
able to give a more or less realistic description of the real
potential. One of the most successful is the so-called BKS
potential, proposed by van Beest, Kramer, and van Santen a
few years ago.16 Is was shown that this potential is able to
give a good description of the various crystalline phases of
silica.28 It is therefore interesting to see how well it is able to
describe the amorphous phase as well. One of the appealing
features of this potential is that it contains only two-body
terms, thus avoiding the three-body terms that are present in
some other potentials for silica, making the BKS potential
very attractive for computer simulations.
The functional form of the BKS potential is given by a

sum of a Coulomb term, an exponential, and a van der Waals
term. Thus the potential between particle i and j is given by

f~ri j!5
qiq je2

ri j
1Ai je2Bi jri j2

Ci j

ri j
6 , ~1!

where e is the charge of an electron and the constants Ai j ,
Bi j , and Ci j are given by ASiSi50.0 eV, ASiO
518 003.7572 eV, AOO51388.7730 eV, BSiSi50.0 Å21,
BSiO54.873 18 Å21, BOO52.760 00 Å21, CSiSi50.0 eV

Å26, CSiO5133.5381 eV Å26, and COO5175.0000 eV
Å26.16 The partial charges qi are qSi52.4 and qO521.2
and e2 is given by 1602.19/(4p8.8542) eV Å. The so-
defined potentials for the Si-O and O-O interactions have the
unphysical property of diverging to minus infinity at small
distances. However, this is not a severe drawback, since in
order to get to these small distances the particles have to
overcome a barrier which is, e.g., in the case of the Si-O
interaction, on the order of 5000 K. In our simulations we
have observed that even at a temperature of 7000 K the par-
ticles are relatively unlikely to cross this barrier, thus indi-
cating that the effective barrier is probably even larger than
5000 K. In order to prevent, in the rare cases in which the
particles cross the barrier, the particles from fusing together,
we have substituted the potential given by Eq. ~1! by a har-
monic potential when ri j is smaller than the location of the
barrier, i.e., for ri j<1.1936 Å and ri j<1.439 Å in the case
of the Si-O and O-O interactions. Note that for intermediate
and low temperatures this modification does not affect the
potential given by Eq. ~1! and that in this limit we are thus
working with the usual BKS potential.
The Coulomb interaction was computed by using the

Ewald method18,29 with a constant, a/L of 6.5, where L is
the size of the cubic box, and by using all q vectors with
uqu<632p/L . In order to save computer time the non-
Coulombic contribution to the potential was truncated and
shifted at a distance of 5.5 Å. Note that this truncation is not
negligible since it affects the pressure of the system. We will
comment on this point more when we discuss the tempera-
ture dependence of the density. In order to minimize surface
effects periodic boundary conditions were used. The masses
of the Si and O atoms were 28.086 and 15.9994 u, respec-
tively. The number of particles was 1002, of which 334 were
silica atoms and 668 were oxygen atoms.
Our simulations were done at constant pressure

(pext50), thus allowing us to compute the temperature de-
pendence of the density and the specific heat at constant
pressure and hence to compare our results with real experi-
ments. For this we used the algorithm proposed by
Andersen30 with the mass of the piston set to 431023 u for
the equilibration of the system and to 131023 u for the
production. The equations of motion were integrated with the
velocity form of the Verlet algorithm. The step size was 1.6
fs which was sufficiently small to allow us to neglect the
drift in the enthalpy of the system when the thermostat was
not active. This thermostat was a stochastic collision proce-
dure which periodically substituted the velocities of all the
particles with those drawn from a Boltzmann distribution
that corresponded to the temperature of the heat bath. For the
equilibration we coupled the system at every 50 time steps to
a stochastic heat bath and propagated it in the (NPT) en-
semble at a temperature of 7000 K for about 32 000 time
steps. After this time the configuration and velocities were
saved for the subsequent quenching procedure. Then the
equilibration run at Tb57000 K was continued for another
40 000 steps and the resulting configuration saved. These
40 000 time steps were long enough to completely decorre-
late the system at this temperature. This process was repeated
until we had 20 configurations at Tb57000 K which were
completely uncorrelated.
In order to simulate the cooling process we took these
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configurations as a starting point of a constant pressure run
in which Tb , the temperature of the heat bath, was decreased
linearly in time t , i.e., Tb(t)5Ti2gt . Here Ti is the initial
temperature ~57000 K! and g is the cooling rate. The system
was coupled to this heat bath every 150 time steps and be-
tween these stochastic collisions it was propagated in the
(NPH) ensemble, where H is the enthalpy. This cooling
process was continued until the temperature of the heat bath
was zero, i.e., for a time Ti /g . The so-obtained configuration
was subsequently relaxed with respect to the coordinates of
the particles and the volume of the system to its nearest
metastable state in configuration space. For the sake of effi-
ciency this relaxation was done with a multidimensional con-
jugate gradient method.31 An equivalent alternative would
have been to continue the molecular-dynamics ~MD! simu-
lation at Tb50 for a very long time. The so-obtained final
configurations were then analyzed in order to investigate
how the so-produced glass depends on the cooling rate.
The cooling rates investigated were 1.1431015,

5.6831014, 2.8431014, 1.4231014, 7.1031013, 3.5531013,
1.7731013, 8.8731012, and 4.4431012 K/s. Although these
cooling rates are of course many orders of magnitude larger
than the ones used in the laboratory, it is currently not pos-
sible to simulate a quench of the system with cooling rates
that are significantly smaller than the ones used here, since
for the smallest cooling rate the length of the runs was about
106 MD steps which took about 340 h of CPU time on a
IBM-RS6000/370.
We also mention that the range of cooling rates investi-

gated here is about a factor of 10 smaller than the one we
used in a similar investigation on a binary Lennard-Jones
mixture.12–14 The reason for this is that for the Lennard-
Jones system the potential is short ranged whereas the long-
range potential needed for silica @Eq. ~1!# slows down the
computation of the forces by about a factor of 30.
In order to improve the statistics of the results it was

necessary to average for each cooling rate over several inde-
pendent runs. For most values of g we averaged over ten
independent starting configurations which were obtained as
described above. An exception were g57.1031013 K/s and
g53.5531013 K/s for which we averaged over 20 configu-
rations.

III. RESULTS

This section consists of three subsections. In the first one
we investigate the properties of the system during the cool-
ing from high temperatures to zero temperatures, and how
the occurring glass transition depends on the cooling rate. In
the second subsection we study how the properties of the
glass at zero temperatures depend on the cooling rate. In the
third subsection we use the information that we gained in the
first two subsections to understand better the microscopic
structure of silica at finite temperatures.

A. Cooling-rate dependence of the quench

One of the simplest quantities one can study in a cooling
process is the enthalpy H of the system which is given by
H5Ekin1Epot1MV̇2/21pextV , where Ekin and Epot are the
kinetic and potential energy of the system, respectively, and

M , V , and pext are the mass of the piston, the volume of the
system, and the external pressure. Earlier simulations of
glass-forming systems have shown that H(Tb) has a notice-
able bend when the temperature is lowered from high tem-
peratures to low temperatures. It is assumed that at the tem-
perature at which this bend occurs the system falls out of
equilibrium, because the typical relaxation times of the sys-
tem exceed the time scale of the cooling process. Therefore
this temperature can be identified with the glass transition
temperature Tg .
In Fig. 1 we show the enthalpy of the system as a function

of the temperature of the heat bath for all cooling rates in-
vestigated. The inset shows the whole range of temperature
and we see that the curves show the mentioned bend at a
temperature around 3500 K. This is thus the temperature
range in which the system falls out of equilibrium for the
cooling rates investigated. This temperature range is shown
enlarged in the main figure. We now see that there is a clear
dependence of H(Tb) on the cooling rate in that the curves
corresponding to the large cooling rates are higher than the
ones for the small cooling rates. At high temperatures the
curves for intermediate and small cooling rates fall on top of
each other to within the noise of the data, which means that
for these temperatures and cooling rates the system has not
yet fallen out of equilibrium. Only at lower temperatures do
the curves for the intermediate values of the cooling rate split
off from this equilibrium ~liquidus! curve and thus is the
system starting to undergo a glass transition and we see that
the temperature at which this happens decreases with de-
creasing cooling rate. Also note that for the largest cooling
rates this splitting off happens at the starting temperature,
thus indicating that for such large cooling rates the system
falls out of equilibrium immediately.
In order to determine the cooling rate dependence of the

temperature at which the system undergoes its glass transi-
tion we use the concept of the ‘‘fictive temperature’’ as in-
troduced by Tool and Eichlin. 32 This concept makes use of
the observation that at high temperatures the curves for not

FIG. 1. Enthalpy H of the system vs Tb , the temperature of the
heat bath, for all cooling rates investigated. Main figure: enlarge-
ment of the glass transition region. The solid and dashed bold
curves are the smallest and largest cooling rates, respectively. Inset:
full range of temperature.
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too large cooling rates fall onto a master curve and that at
low temperatures the curves have the same form, i.e., can be
collapsed onto a master curve by shifting them vertically.
The intersection of the extrapolation of these two master
curves gives then an estimate for the glass transition tem-
perature Tg . We therefore fitted the curves for
g<3.5531013 K/s in the temperature range 5000 K <Tb<
6750 K with a straight line and did the same with the curves
for g<1.4231014 K/s in the low-temperature range 0
<Tb<1250 K. Note that the determination of the glass tem-
perature via the mentioned procedure is only reasonable if
the high-temperature part of the curve actually falls onto the
liquidus curve. Since this is not the case for the three fastest
cooling rates, we have not determined Tg for these cooling
rates.
In Fig. 2 we show the so-determined glass transition tem-

perature as a function of the cooling rate. We see that a
variation of g by about 1.5 decades gives rise to a variation
of Tg of about 350 K. Also included in the figure is a fit to
the data with the functional form

Tg~g!5T02
B

ln~gA !
~2!

~solid line!, which is obtained by assuming a Vogel-Fulcher
dependence of the relaxation time t of the system on the
temperature, i.e., t(T)5A exp@B/(T2T0)#, and arguing that
the system falls out of equilibrium at that temperature at
which the relaxation time is on the order of the time scale of
the cooling process, i.e., t(Tg)5g21.1,33 We see that this
type of fit describes the data very well, as is the case in real
experiments.7 For the parameters A and B we find
1.8310216 s/K and 2625 K, respectively. The Vogel tem-
perature T0, i.e., the glass temperature that would be ob-
served upon an infinitesimal cooling rate, is 2525 K, which is
significantly higher than the experimental value of 1446 K.34
~Here we assume that for the cooling rates used in the labo-
ratory the dependence of Tg on the cooling rate is sufficiently
small, so that we can use the results of experiments at a finite
cooling rate as a good approximation for T0.! Thus we come
to the conclusion that either the extrapolation of the cooling

rate dependence as given in Eq. ~2! is not correct, because
we are not yet in the range of cooling rates where Eq. ~2!
holds, or that the silica model studied here does not repro-
duce well the glass transition temperature.
We also mention that further sources of uncertainty in the

determination of T0 are finite-size effects in the simulation.
Such dependences have indeed been observed in experiments
with relatively simple liquids35 and also a recent computer
simulation of silica has shown that the relaxation behavior of
such a system is severely affected by finite-size effects.36
In a similar study on cooling-rate effects in a Lennard-

Jones glass14 we have found that the dependence of Tg on the
cooling rate is also fitted well by the function
Tg(g)5Tc1(Ag)1/d, which follows from the assumption
that the temperature dependence of the relaxation time is
given by t(T)5A(T2Tc)2d, a functional form that is sug-
gested by the so-called mode-coupling theory of the glass
transition.4 We therefore tried to fit our data for the g depen-
dence of Tg also in the present case with this functional form
and found that it is also able to describe the data well ~with
Tc52778 K and d52.52) ~dashed line in Fig. 2!. Thus, if
the two functional forms are merely seen as fitting functions,
they can be considered as equally good. Furthermore, we
have also tried to fit the data with an Arrhenius law, the
functional form that seems to describe well the experimental
data. ~Note that Rössler and Sokolov have recently demon-
strated that the viscosity of silica at temperatures a bit above
Tg shows a non-Arrhenius behavior,37 but this range of vis-
cosity is outside the range of our simulation.! The result of
this type of fit is included in the figure as well ~thin solid
line! and is clearly inferior to the two other functional forms.
Thus it seems that the relaxation times of silica show at high
temperatures a qualitative different temperature dependence
than at low temperatures, which is analogous to the depen-
dence found in water,38 a network former that is in many
aspects similar to silica.
As stated above, we observe a change of Tg of about 300

K when the cooling rate is varied by 1.5 decades. Such a
change in Tg is significantly larger than the values measured
in real experiments in which this quantity was determined for
various materials.5,7,8 It is found that a variation of the cool-
ing rate by one decade gives rise to a change of Tg on the
order of 10 K, thus much less than the 300 K determined
here. The reason for this discrepancy is probably the huge
difference between the cooling rates used in the simulation
and the one used in the laboratory. If we use the parameters
from our fit to Tg and extrapolate this Tg(g) dependence to a
laboratory cooling rate of 0.1 K/s, we find that the predicted
change of Tg is only about 5 K per decade of cooling rate,
which is in good agreement with the typical values found in
experiments.5,7,8
By differentiating the enthalpy with respect to the tem-

perature Tb , we obtain cp , the specific heat at constant pres-
sure. Since the original data were a bit too noisy to allow for
a direct differentiation, we parametrized H(Tb) with a spline
under tension39 and differentiated this spline. Figure 3 shows
the resulting specific heat for all cooling rates investigated.
To facilitate the comparison with experimental values we
have chosen the units of cp to be J/g K. From this figure we
see that at high temperatures the fastest cooling rates show a
strong increase with decreasing temperature. The reason for

FIG. 2. Glass transition temperature Tg vs the cooling rate. The
solid line is a fit with the functional form given by Eq. ~2!, the
dashed line with a power law, and the thin solid line with an
Arrhenius law.
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this is that for these fast cooling rates the system falls out of
equilibrium already at the start of the quench ~see Fig. 1!,
thus giving rise to this increase of cp . After this increase
cp attains a maximum of about 1.85 J/g K at a temperature
around 4200 K and then drops again to a value of 1.25 J/g K
for Tb50.
The real equilibrium curve of cp at high temperatures is

given by the curves for slow cooling rates. We see that cp
increases slowly from a value around 1.80 J/g K to a value
around 1.95 J/g K when the temperature is decreased from
7000 to 4300 K. At this latter temperature the specific heat
starts to drop quickly, indicating that the system undergoes
the glass transition, and attains a value around 1.25 J/g K at
Tb50 K. This value is close to the classical Dulong-Petit
value of 1.236 J/g K expected for a harmonic solid. We no-
tice that in the temperature range where the glass transition
takes place the temperature dependence of cp is independent
of the cooling rate to within the accuracy of our data, if the
cooling rate is not too large. This is in contrast to our find-
ings for the previously investigated Lennard-Jones system,14
for which we found that the drop in cp at the glass transition
becomes steeper with decreasing cooling rate. Since we have
seen a clear cooling rate dependence of the temperature de-
pendence of the enthalpy ~see Fig. 1!, it can be concluded
that its derivative, i.e., cp , should show a cooling rate de-
pendence also and that thus the reason for our failure to
detect one must be given by the statistical inaccuracy of our
data.
Since neither the low- nor high-temperature dependence

of cp shows a strong dependence on the cooling rate, if g is
not too large, we can compare the values of cp above and
below the glass transition temperature with their experimen-
tal counterparts. Brückner reports that around 1500 K the
value of cp for amorphous silica is about 1.23 J/g K,40 which
compares well with the one found in this simulation, i.e.,
1.25 J/g K. At a temperature of 2000 K Brückner gives the
value 1.50 J/g K, which is significantly less than the one
found in our simulation (cp'1.8 J/g K at Tb57000 K!. Thus
we see that the here-used BKS potential does not give an
accurate description of the magnitude of the jump in the
specific heat. One possible reason for the observed discrep-

ancy might, however, not be the inadequacy of the potential,
but the fact that the Debye temperature of silica is relatively
high @1200 K, ~Ref. 40!# thus showing that quantum effects
might be important even at the temperatures we are consid-
ering.
We now turn our attention to a further important macro-

scopic quantity, the density r . In Fig. 4 we show r as a
function of the bath temperature Tb for all cooling rates in-
vestigated. As in the case of the enthalpy we find that at high
temperatures the curves for all but the three fastest cooling
rates fall onto a master curve, the equilibrium curve. From
the curves corresponding to small cooling rates we recognize
that this equilibrium curve shows a maximum at around 4800
K. Thus we find that, in accordance with experiments,40–42
this model shows an anomaly in the density. The experimen-
tal value for the temperature of the maximum in r is 1820 K,
thus significantly lower than the temperature at which we
observe the anomaly. Since we see that, within the accuracy
of our data, the temperature at which this anomaly occurs is
independent of the cooling rate, we conclude that for the
BKS potential this anomaly is indeed at a temperature which
is too high, even if one would cool the system with a signifi-
cantly smaller cooling rate. It has to be mentioned, however,
that for different potentials this anomaly occurs at even
higher temperatures or is not present at all,19 thus showing
that with respect to this feature the BKS potential is superior
to other potentials.
For intermediate and small values of g the value of r

decreases after having passed through the maximum. At even
lower temperatures the curves then start to increase again.
The temperature at which this increasing trend starts de-
creases with decreasing cooling rate, thus showing that the
curves follow the low-temperature side of the hump the
longer the smaller the cooling rate is. At even lower tempera-
tures the curves become, within the accuracy of our data,
straight lines with negative slope.
From Fig. 4 we also recognize that, in the temperature

range considered, the relative change in density is relatively
small ~less than 10%! which is in accordance with the ex-
perimental finding that the thermal expansion coefficient of

FIG. 3. Specific heat vs Tb for all cooling rates investigated. The
solid and dashed bold curves are the smallest and largest cooling
rates, respectively.

FIG. 4. Density of the system vs Tb for all cooling rates inves-
tigated. The solid and dashed bold curves are the smallest and larg-
est cooling rates, respectively. Note the presence of a local maxi-
mum in r at temperatures around 4800 K if g is small.
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silica is small.41,45 We also note that at low temperatures the
density is around 2.3 g/cm3, which compares well with
experiments.41,43 It is interesting that a simulation with the
original BKS potential, i.e., without the cutoff at 5.5 Å ~see
Sec. II!, gave at 5000 K a density of 2.6 g/cm3, thus about
10% higher than the one found in this work.44 This shows
how sensitively quantities like the pressure depend on the
details of the potential at large distances. Since the introduc-
tion of the cutoff moves the value of the density closer to the
experimental one, we thus find that this cutoff gives rise to a
more realistic description of amorphous silica.
From the temperature dependence of the density we can

extract

ap5
1
V

]V
]T Up52

1
r

]r

]T Up , ~3!

the thermal expansion coefficient at constant pressure. We
determined ap at T50 K from the slope of the straight line
of r(T) at low temperatures ~see Fig. 4!. The resulting cool-
ing rate dependence of ap(T50 K! is shown in Fig. 5. We
recognize that this quantity shows a decreasing trend with
decreasing cooling rate and that, within the accuracy of our
data, it is not possible to say what the asymptotic value for
very small cooling rates is. However, the experimental value
of ap , 5.531027 K/s,41,45 is certainly compatible with an
extrapolation of our data to g50.
It is also interesting to compare this result with the one

found in a similar investigation of a binary Lennard-Jones
system,14 where no significant dependence of ap at T50 K
on the cooling rate was found. Since a nonzero ap is the
result of the anharmonicity of the local potential, we thus
come to the conclusion that in this model for silica these
anharmonic effects are cooling rate dependent, whereas they
are not for the Lennard-Jones system, i.e., for a prototype of
a simple liquid.

B. Cooling-rate dependence of the properties of the glass

In the previous subsection we investigated how the cool-
ing rate affects macroscopic quantities like the enthalpy or
the density at finite temperatures. The goal of the present

subsection is to see how the cooling rate affects various mac-
roscopic and microscopic quantities of the glass at T50 K,
i.e., of the final product of the quench and the subsequent
relaxation of the system as described above.
The first quantity we investigate is the value of the en-

thalpy of the glass at T50 K. In Fig. 1 we have seen that at
finite temperatures the curves of the enthalpy H(Tb) follow
the equilibrium curve as long as the relaxation time of the
system is smaller than the time scale of the cooling process,
i.e., g21. If the two time scales become comparable, the
system undergoes a glass transition and the curves for
H(Tb) remain above the equilibrium curve. Therefore we
expect that the final value of the enthalpy decreases with
decreasing g . That this is indeed the case is shown in Fig. 6
where we show Hf , the value of the enthalpy after the
quench, for all cooling rates investigated.
From a formal point of view the cooling process can also

be seen as an optimization problem in which the system tries
to minimize the enthalpy. It will manage to do this the better
the more time it is given to search for this minimum. Thus
one might ask what the value of the enthalpy ~the cost func-
tion! is when the system is given a certain amount of time,
characterized here by the cooling rate, to minimize H . Such
types of questions have been addressed already in other types
of complex optimization problems and also for other types of
glass formers.46–48 From theoretical arguments one can ex-
pect the cost function to show either a logarithmic or a
power-law dependence on the cooling rate,47 i.e.,

Hf~g!5Hf
01a1~2lng!a2 ~4!

or

Hf~g!5Hf
01b1gb2, ~5!

where Hf
0, ai , and bi are fit parameters. We therefore fitted

our data for Hf with the two functional forms and the result
of these fits is included in Fig. 6 as well. We recognize that,

FIG. 5. Thermal expansion coefficient at T50 K vs cooling
rate.

FIG. 6. Enthalpy after the quench vs the cooling rate ~open
circles!. The solid and dashed curves are fits with the functional
forms given by Eqs. ~4! and ~5!, respectively. The three horizontal
lines are the value of the enthalpy of the relaxed configuration at
Tb57000 K, Tb54840 K, and Tb53220 K ~top to bottom!. See
text for details.
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in the cooling range investigated, both functional forms fit
the data equally well. The values we obtain for Hf

0 are
219.1213 eV for the logarithmic dependence and
219.1252 eV for the power-law dependence. With the accu-
racy of our data we are not able to decide which functional
form, if any, is appropriate to describe our data. This is the
same conclusion we came to in case of the earlier-mentioned
investigation of a Lennard-Jones system.14
Next we turn our attention to the cooling rate dependence

of the density. In Fig. 7 we show the density of the glass
after the quench versus the cooling rate. The densities we
found for the glass are between 2.27 and 2.38 g/cm3 which
compares well with the experimental values of 2.2 g/
cm3.41,43 We see that, contrary to most real glasses or
Lennard-Jones systems,5,8,14 r f decreases with decreasing
cooling rate, a behavior that can be understood by remem-
bering our observation ~see Fig. 4! that for small cooling
rates the curves for the density follow the equilibrium curve
also when the latter is decreasing on the low-temperature
side of the density anomaly. It should be noted, however,
that this observed decrease of the final density with decreas-
ing cooling rate cannot be the correct asymptotic behavior
for very small cooling rate. The reason for this is that we
know that at low temperatures the thermal expansion coeffi-
cient of silica is positive @as can be seen in experiments or
from the fact that the density decreases with increasing tem-
perature ~see Fig. 4!#. Thus we expect that the equilibrium
curve for the density will, after having shown a decreasing
behavior for temperatures just below the density anomaly,
bend upward again. If a quench is made with a very small,
but finite, value of g , the corresponding curve for the density
will fall out of equilibrium in that temperature range where
the equilibrium curve will already show the increasing be-
havior ~with decreasing temperature!. Therefore the final
density of the glass as produced with such a small cooling
rate will be lower than the one which would be obtained with
an infinitesimal small cooling rate; i.e., at very small cooling
rate the curve r f(g) will increase with decreasing cooling
rate. Thus we conclude that the cooling rate dependence of
r f as seen in Fig. 7 is not yet the asymptotic one. Hence it

does not make sense to use one of the formulas given in Eqs.
~4! and ~5! to extrapolate r f(g) to very small cooling rates.
After having presented our results on the cooling rate de-

pendence of the macroscopic properties of the glass we now
turn our attention to the microscopic properties of the system
in order to gain some understanding about how the macro-
scopic behavior is related to the microscopic one.
The first quantity we investigate is the radial distribution

function gab(r) between species a and b (a ,b
P$Si,O%).49 This function allows one to see how the struc-
ture of the glass changes on the various length scales when
the cooling rate is changed. In Fig. 8~a! we show gSiSi(r) for
the largest and smallest cooling rate investigated ~main fig-
ure!, as well as an enlargement of the region of the second-
nearest-neighbor peak for a few selected cooling rates ~in-
set!. From the main figure we recognize that with decreasing
cooling rate the structural order at short and intermediate
distances ~i.e., r<8 Å! increases, in that the peaks and
minima become more pronounced. In particular we see that
the height of the first-nearest-neighbor peak changes by

FIG. 7. Density after the quench vs the cooling rate. The three
horizontal lines are the value of the density of the relaxed configu-
ration at Tb57000 K, Tb54840 K, and Tb53220 K ~top to bot-
tom!. See text for details.

FIG. 8. Radial distribution function. ~a! gSiSi(r). Main figure:
the slowest ~solid curve! and fastest ~dashed curve! cooling rate.
The vertical dotted lines give the position of the peaks as deter-
mined from experiments ~see Table I!. Inset: enlargement of the
second-nearest-neighbor peak for four selected cooling rates. ~b!
gSiO(r) and gOO(r) for the slowest ~solid curves! and fastest
~dashed curve! cooling rate. Inset: enlargement of the second- and
third-nearest-neighbor peak.
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about 20%. The amount of this change is significantly larger
than any change we observed for macroscopic properties,
thus showing that the microscopic properties can show a
much stronger dependence on the cooling rate than the mac-
roscopic properties do.
In Fig. 8~b! we show the radial distribution function for

the Si-O and the O-O pairs for the largest and smallest cool-
ing rate investigated. Also in this case we notice a significant
cooling-rate dependence for distances r<8 Å, i.e., the short-
and medium-range order are affected significantly by the
cooling rate in that the order increases with decreasing cool-
ing rate.
From the curves presented in Fig. 8 we see that, although

the height of the various peaks shows a significant depen-
dence on the cooling rate, the location of the peaks is af-
fected much less by a variation of g . Thus it is reasonable to
compare the location of these peaks with the ones as deter-
mined in experiments. In Table I we give the location of the
nearest- and second-nearest-neighbor peaks as well as the
corresponding experimental values ~also included in Fig. 8 as
vertical dotted lines!. The locations of these peaks were de-
termined from the data for the slowest cooling rate. We see
that, although the accordance between experiment and the
results of our simulation is not perfect, the BKS potential
does quite well to reproduce the short- and medium-range
structure of the glass and can therefore, from this point of
view, be considered as a good model also for amorphous
silica.
Having investigated the cooling-rate dependence of the

radial distribution function we now move on to study how
the structure factor S(q) depends on g . Although from a
mathematical point of view the radial distribution function
and the structure factor contain the same information, the
importance of the latter for scattering experiments makes it
worthwhile to investigate its cooling-rate dependence as
well. In Fig. 9 we thus show the three partial structure fac-
tors. We recognize from these figures that the S(q) show a
significant dependence on the cooling rate for small and in-
termediate values of q , in that the height of the main peak as
well as the so-called first sharp diffraction peak ~FSDP!, i.e.,
the peak to the left of the main peak, depend on g . This
FSDP has recently been the focus of significant interest,
since it characterizes the stucture of the glass on intermediate
length scales and its microscopic origin is still a matter of

debate.52 In the case of the Si-Si and Si-O correlations the
corresponding structure factors show only a weak depen-
dence on g for q values larger than the location of the main
peak. For the case of the O-O correlation, however, even for
large values of q a noticeable dependence of S(q) on g is
observed, indicating that the short-range order of O-O pairs

FIG. 9. Partial structure factors for the slowest ~solid curve! and
fastest ~dashed curve! cooling rate. Insets: enlargement of the first
sharp diffraction peak. ~a! Si-Si correlation. ~b! Si-O correlation. ~c!
O-O correlation.

TABLE I. Location of the first- and second-nearest-neighbor
peaks in the radial distribution function g(r). The numbers in pa-
rentheses in the second column give the error in units of the last
digit.

Simulation @Å# Experiment @Å#

SiO first peak 1.595~5! 1.608b 1.620a

second peak 4.12~1! 4.15a

OO first peak 2.590~5! 2.626b 2.65a

second peak 5.01~2! 4.95a

SiSi first peak 3.155~10! 3.077c 3.12a

second peak 5.05~5! 5.18a

aReference 43.
bReference 50.
cReference 51.
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changes significantly. The main change in the structure of
S(q) occurs, however, in all three correlation function for
values of q close to the FSDP ~see insets!. We see that the
cooling rate affects this peak in two ways in that its height as
well its position is changed. Since this peak reflects the
medium-range order of the system, we thus come to the con-
clusion that the structure of the glass on these length scales is
significantly affected by the cooling rate.
From the knowledge of rmin , the location of the first mini-

mum in the radial distribution function, we can compute the
~partial! coordination number z of particle i , which we define
as the number of other particles j with urj2riu,rmin . We
have found that rmin is essentially independent of the cooling
rate and therefore we will use in the following always the
same values, i.e., rmin

SiSi53.42 Å, rmin
SiO52.20 Å, and

rmin
OO53.00 Å. In Fig. 10 we show Pab

z5n the probability that a
particle of type a has n nearest neighbors of type b , versus
the cooling rate g .
First we study the nearest-neighbor pairs, i.e., the Si-O

and the O-Si pairs @Figs. 10~a! and 10~b!#. We see that the
vast majority of the silicon atoms is surrounded by four oxy-
gen atoms, which can be understood by taking into account
that at low pressures silica forms a network of corner-sharing
tetrahedra, each of which has a silicon atom in its center and
four oxygen atoms at its corners. The number of silica atoms
that are not fourfold coordinated is about 5% for the fastest
cooling rate and diminishes quickly to less than 0.5% when
the cooling rate is decreased. This shows that the local order
of the network, i.e., the frequency of tetrahedra, increases

fast with decreasing cooling rate. The silicon atoms that are
not fourfold coordinated are surrounded in most cases by five
oxygen atoms and only a very small fraction is surrounded
by three oxygen atoms. Figure 10~b! shows that most of the
oxygen atoms are surrounded by two silicon atoms, also this
observation in accordance with the above-mentioned net-
work structure of corner-sharing tetrahedra. The number of
oxygen atoms that are not twofold coordinated is for all cool-
ing rates less than 3% and decreases quickly to less than
0.5% with decreasing g . Thus we find that for slow cooling
rates the BKS potential automatically gives the ‘‘rules’’
commonly postulated for ideal amorphous silica, namely,
that this system is a ‘‘continuous random network.’’53
The just studied Si-O and O-Si coordination numbers are

characteristic for the structure of the network on the shortest
length scale. The coordination numbers for the Si-Si and the
O-O pairs, however, are sensitive on a length scale of the
structure that is a bit larger. In Figs. 10~c! and 10~d! we show
the cooling-rate dependence of these coordination numbers.
We see that most silicon atoms are surrounded by four other
silicon atoms, although at the fastest cooling rate about 18%
of them have a different Si-Si coordination number. This
number shows that most tetrahedra are surrounded by four
other tetrahedra, each of which has a silicon atom in its cen-
ter. ~See below for a further discussion of this point.! The
curves for the O-O coordination numbers show that the most
likely configuration is that an oxygen atom has six other
oxygen atoms within a distance of rmin

OO and that this prob-
ability increases significantly with decreasing cooling rate.

FIG. 10. Partial coordination numbers vs the cooling rate. ~a! Si-O pairs. ~b! O-Si pairs. ~c! Si-Si pairs. ~d! O-O pairs. Note the different
scales for the various curves.
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These six oxygen atoms are the ones that sit in the corners of
the two tetrahedra which are connected by the first oxygen
atom ~see Fig. 11!. Thus we come also in this case to the

conclusion that the order within the network increases with
decreasing cooling rate.
Since we have just seen that the most frequent coordina-

tion number for the Si-Si and the O-O pairs can be rational-
ized by assuming that the network is composed of corner-
sharing tetrahedra, we now investigate whether this
argument is valid only on a qualitative basis or whether it is
correct even on a quantitative basis. Thus the question is
whether the cooling-rate dependence of the various coordi-
nation numbers for the Si-Si and the O-O pairs can be com-
puted from the knowledge of the cooling-rate dependence of
the coordination numbers of the Si-O and the O-Si pairs. In
order to decide this we assumed that the coordination num-
bers for the Si-O are statistically independent from the ones
of the O-Si pairs. If we postulate that a silicon atom that is a
nearest neighbor of an oxygen atom will have a distance less
than rmin

SiSi from all other silicon atoms that are also nearest
neighbors of this oxygen atom, it is relatively simple to com-
pute the probability how many silicon atoms have a distance
less than rmin

SiSi from any given silicon atom. Using similar
postulates for the other combinations of particles one can,
e.g., show that within this ansatz the quantity PSiSi

z54 is given
by

PSiSi
z545PSiO

z53@3POSi
z51~POSi

z53!213~POSi
z52!2POSi

z53#1PSiO
z54@6~POSi

z51!2~POSi
z53!214~POSi

z52!4112POSi
z51~POSi

z52!2POSi
z53#

1PSiO
z55@5POSi

z51~POSi
z52!4130~POSi

z51!2~POSi
z52!2POSi

z53110~POSi
z51!3~POSi

z53!2# . ~6!

Similar expressions hold for the other values of the coordi-
nation numbers shown in Figs. 10~c! and 10~d!. Equipped
with these functions we now can compare the prediction of
this factorization approximation with the measured values
for the coordination numbers. In Fig. 12 we show the differ-
ence between the actual value of the coordination numbers
and the predicted ones, i.e., Psim

z 2Pappr
z . We recognize from

Fig. 12~a!, that for the Si-Si pairs this factorization approxi-
mation is very good in that the difference between the actual
values and the predicted one is less than 1.5% for fast cool-
ing rates and is essentially zero, to within the statistical ac-
curacy of our data, for small cooling rates. Thus we find that
this factorization approximation works very well for the
Si-Si pairs.
This agreement between the real data and the factorization

approximation is not as good for the case of the O-O pairs
@Fig. 12~b!#. We see that the discrepancy can be as large as
25% for the fastest cooling rate but that it diminishes, how-
ever, to less than 13% for the slowest cooling rate. The rea-
son that the factorization approximation does not work as
well in this case as it did in the case of the Si-Si pairs is
likely to be the fact that two corner-sharing tetrahedra are
tilted towards each other; i.e., the angle between silicon atom
No. 1, bridging oxygen atom No. 3, and silicon atom No. 2
~see Fig. 11! is significantly less than 180°. Therefore oxy-
gen atom No. 2 is also quite close to oxygen atom No. 1,
although the former is, from a topological point of view,
quite far away from the latter. Therefore it is not unlikely
that oxygen atom No. 1 will have more than just six nearest-

neighbor oxygen atoms. This is confirmed by the curve
POO
z57 @see Fig. 10~d!#, which shows that for fast cooling rates
more than 20% of the oxygen atoms have more than six
other oxygen atoms as nearest neighbors, and that this figure
does not drop below 10% even in the case of the slowest
cooling rate. That the tetrahedra actually have the local ar-
rangement suggested above can be inferred from the bond-
bond angles between neighboring atoms and therefore we
will investigate this quantity next.
We have seen in Fig. 8 that the nearest-neighbor distance

between silicon and oxygen atoms is essentially independent
of the cooling rate. Thus we conclude that the tetrahedra do
not change their size significantly when the cooling rate is
varied. However, since we have found that the density of the
system depends on the cooling rate, it must therefore be the
case that it is the relative arrangement of neighboring tetra-
hedra which changes with g . One possibility to characterize
this relative arrangement is to consider the various bond-
bond angles between the different atoms. In Fig. 13 we show
the cooling-rate dependence of the distribution function for
some selected angles for various cooling rates. Figure 13~a!
shows this distribution function for the tetrahedral angle
O-Si-O for all cooling rates investigated. For a perfect tetra-
hedra this angle is 109.47°. We see that POSiO has indeed a
maximum close to this ideal angle. The location of this maxi-
mum is not quite the one of the ideal tetrahedron but with
decreasing cooling rate it approaches this value. A decreas-
ing cooling rate also leads to an increase of the height of the
peak as well as a decrease of its width. Thus we find that the

FIG. 11. Schematic representation of two corner-sharing tetra-
hedra.
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structure of the local tetrahedra approaches indeed the one of
an ideal tetrahedron when the cooling rate is decreased. The
position of this peak is also in good agreement with the
position found in experiments, as can be seen from Table II.
In Fig. 13~b! we show the distribution function for the

angle between three neighboring oxygen atoms, POOO , for
the fastest and slowest cooling rate investigated ~dashed and
solid curve, respectively!. We see that POOO has two peaks.
The first one is relatively sharp and has its maximum around
60°. It corresponds to the angle that is formed by three oxy-
gen atoms of the same tetrahedron ~e.g., O#1-O#3-O#4 in
Fig. 11!. With decreasing cooling rate this peak becomes
significantly higher and narrower, indicating that the tetrahe-
dra become more regular. The second peak is much broader
than the first one and is located at around 135°. Its position
changes from around 128° for fast cooling rates to around
137° for slow cooling rates. This peak corresponds to angles
that are formed by an oxygen, on one tetrahedron, a bridging
oxygen, and a third oxygen on the second tetrahedron ~e.g.,
O#1-O#3-O#2 in Fig. 11!. ~Note that this angle is not only
sensitive to the relative position of the two tetrahedra, i.e.,
the angle Si#1-O#3-Si#2, but also to their relative orienta-
tion. If the upper tetrahedron in Fig. 11 is rotated around the
axis given by O#3-Si#2, the mentioned angle between the

three O atoms will change also. This is probably the reason
why the second peak is so broad.! The fact that this angle
widens with decreasing cooling rate shows that the two
neighboring tetrahedra move away from each other, thus
making the structure less dense. Thus this mechanism is pre-
sumably the reason for the decrease in density after the den-
sity anomaly ~see Fig. 4!. We will investigate this point more
in Sec. III C .
The picture of an opening network with decreasing cool-

ing rate is also corroborated by the distribution of the Si-
O-Si angle which is included in Fig. 13~b! also. We see that
for fast cooling rates this distribution shows a large peak at
141° whose position moves to 152° for the smallest cooling
rate, thus indicating that the network is opening up. From
Table II we recognize that at the smallest cooling rate the
location and the width of the peak are in fair agreement with
the experimental values.
The angles O-Si-O, O-O-O, and Si-O-Si measure the

angles between particles that are located on one or two tet-

FIG. 12. Difference between the partial coordination numbers
and the prediction of the factorization approximation. ~a! Si-Si
pairs. ~b! O-O pairs.

FIG. 13. Distribution function of various angles and cooling
rates. ~a! Angle O-Si-O for all cooling rates investigated. The bold
solid and dashed curves correspond to the slowest and fastest cool-
ing rates, respectively. The vertical line is the experimental value
from Refs. 43, 55, and 56. ~b! Angles O-O-O, Si-Si-Si, and Si-O-Si
for the slowest ~solid curves! and fastest ~dashed curves! cooling
rates investigated. The vertical lines are the experimental values
from Refs. 43, 54, and 56.
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rahedra. The fourth angle we consider, Si-Si-Si, is, however,
defined by three particles that are in the center of three tet-
rahedra. Thus this angle is sensitive to the structure of the
network on a length scale which is a bit larger. In Fig. 13~b!
be show the distribution function for this angle as well. We
see that this distribution shows a small peak at about 60° and
a large peak between 90° and 120° which seems to be com-
posed of at least two, possibly even three, peaks. The small
peak at 60° was also observed by Rino et al.20 and in that
paper it was shown that such an angle occurs when the rings
in the network ~defined below! have length 4. Since such
short rings occur relatively seldom ~see below!, also the cor-
responding peak is small. We also see that the height of this
peak decreases significantly with decreasing cooling rate,
which is in accordance with the observation discussed below
that the number of rings of length 4 decreases with decreas-
ing cooling rate. Also the main peak shows a noticeable de-
pendence on g in that its height increases and its width de-
creases with decreasing g . Because, as mentioned above, this
angle characterizes the structure of the network on an inter-
mediate length scale, it is difficult to draw conclusions about
the nature of this structure from the cooling-rate dependence
of this distribution and thus we do not attempt to do it at this
point.
A different way to characterize the structure of a network

on the intermediate length scale is to consider the distribu-
tion of the frequency of rings of a given size. A ring is
defined as follows: Starting from a Si atom one chooses two
different O atoms that are nearest neighbors. Pick one of
these. In general this O atom will also be a nearest neighbor
of a second Si atom. From this new Si atom one then picks a
new nearest-neighbor O atom, etc. This process is continued
until one returns to the O atom which is the second one of
the nearest-neighbor O atoms of the first Si atom. In this way
one has constructed a closed loop of Si-O segments. The
shortest one of these loops is called the ring associated with
the original Si atom and the two nearest-neighbor O atoms.
The number of Si-O segments in this loop is called the size
of this ring. Both the distribution with which the so-defined
rings occur and the distances and bond angles present in
these rings were studied extensively in the paper by Rino
et al.20 Therefore we restrict ourselves at this place to study
the cooling rate distribution of the size of the rings.
In Fig. 14 we show the probability that a particle is a

member of a ring with a given size versus the cooling rate.
Note that this distribution is not the same as the probability
to find a ring of size n , since the two distributions differ by a
weighting factor of n . A discussion of the latter distribution
is given in Ref. 26. From Fig. 14 we recognize that for all
cooling rates investigated rings of size 6 are the most fre-
quent ones. This fact can be understood by considering the
phase diagram of silica. At zero pressure the crystalline

phase that is obtained when the system is cooled from the
liquid phase is b-cristobalite,57 which has only rings of size
6. ~When the temperature is decreased even further one en-
ters the phase of b-tridymite and then b-quartz, which have
rings of size 6 and 8.! It can be expected that the local
structure of the amorphous network will be similar to the
crystalline network next to the liquid phase. We thus expect
that also in the amorphous phase rings of size 6 are the most
frequent ones and Fig. 14 shows that this is indeed the case.
From the figure we also recognize that very short and very

long rings occur only seldom and that their frequency dimin-
ishes with decreasing cooling rate. @Note that we also found
very few rings ~less than 0.5%! of size 2 and 9, which are not
shown in the figure.# Thus we find that also the distribution
of the size of the rings, a quantity which characterizes the
structure of the network on the intermediate length scale,
depends noticeably on the cooling rate and that this depen-
dence shows that the structure becomes more ordered, i.e.,
approaches the local topology of cristobalite, when the cool-
ing rate is lowered.
The last quantity we investigate with respect to its

cooling-rate dependence is the spectrum of the system. This
quantity is interesting for two reasons: First it can be com-
pared with the results of experiments and thus it provides a
further test on how realistic the potential is and second it is
also of general interest to study the spectrum in order to gain
insight into the dynamical behavior of glasses at low
temperatures.14,21,58–62
The spectrum was determined by computing the

eigenvalues of the dynamical matrix given by
(mjmk)1/2]2V($ri%)/]r j ,a]rk ,b , where j and k are particle
indices and a and b are the Cartesian components x ,y ,z . In

FIG. 14. Probability that a particle is a member of a ring of size
n vs the cooling rate.

TABLE II. Location and, in parentheses, the full width at half maximum of the angles O-Si-O and
Si-O-Si as determined from the simulation and experiments.

Simulation Experiment
g54.431012 K/s Ref. 43 Ref. 54 Ref. 55 Ref. 56

OSiO 108.3° ~12.8°) 109.5° 109.7° 109.4°
SiOSi 152° ~35.7°) 144° ~38!° 142° ~26°) 144°, 152° 153°
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Fig. 15 we show the so-obtained spectrum. In order not to
crowd the figure too much we present only three of the cool-
ing rates investigated ~see figure caption for details!. The
spectrum of amorphous silica has also been measured in neu-
tron and Raman scattering experiments and it was found that
it shows several peaks. Galeener and Lucovsky63 report lines
at 495 and 1200 cm21, and Kucirková and Navrátil64 lines at
460, 802, and 1084 cm21 for their Raman scattering experi-
ments, and Carpenter and Price find peaks at 400, 810, 1070,
and 1190 cm21 in their neutron scattering experiment.65 The
locations of these peaks are included in the figure as well
~vertical lines!. We see that the spectrum has two main fea-
tures. The first one is a double peak at high frequencies and
the second one is a broad, relatively featureless mountain at
intermediate and low frequencies. It should also be noted
that there is a gap at small frequencies which is a finite-size
effect, since the acoustic modes with very small frequencies
have a wavelength that exceeds the size of the simulation
box.
Let us first discuss the double peak at high frequencies.

We see that the effect of a decreasing cooling rate is to
increase significantly the height of the two peaks as well as
to decrease the minimum between the two peaks. Further-
more, we see a small shift of the positions of the two peaks
to higher frequencies when the cooling rate is decreased. We
recognize that the location of the two peaks reproduces well
the ones of the experiment and, because of the mentioned
shift, the accordance between experiment and simulation be-
comes even better with decreasing cooling rate. Note that it
is a nontrivial feature of the model that the spectrum shows
at high frequencies the double-peak structure observed in
experiments. Jin et al. have, e.g., found in their simulation of
amorphous silica, in which a three-body potential was used,
that at high frequencies three peaks are present22 and della
Valle and Venuti have shown23 that the potential proposed
by Tsunekuki et al.66 gives two peaks, but that their location
does not match the one of the experiments as well as we find
it here for the BKS potential. Thus we conclude that with

respect to this property the BKS potential seems to be supe-
rior to the other potentials investigated so far.
The part of the spectrum at intermediate frequencies

shows a relatively weak dependence on the cooling rate. This
is not surprising, since most of the modes associated with
these frequencies are relatively extended and, since the struc-
ture of the system at larger distances is not affected strongly
by the cooling rate, these modes are likely not to be affected
by the cooling rate either. A more detailed investigation of
this point will be published elsewhere.62
The spectrum we find at intermediate frequencies seems

to reproduce the experimental spectrum less well than the
high-frequency part, in that we do not see any prominent
feature in the range 400–500 cm21 which is in disagreement
with experiments. This is probably due to the fact that in this
frequency range most of the modes involve the movement of
several particles; thus they extend over a larger region of
space. Since it is much harder to devise potentials that are
able to reproduce correctly the forces also on the
intermediate-range distances, it is not surprising that the
BKS potential does not do well on this point and it shares
this flaw with the other models as well.22–25 In passing we
also note that the spectrum as determined from a simulation
with the original BKS potential, i.e., without the truncation
of the short-range part, gives essentially the same
spectrum,67 thus showing that the discrepancy between the
experiment and our simulation is not due to this truncation.
The low-frequency part of the spectrum of glassy materi-

als has recently been the focus of interest of several investi-
gations since it was found that in this frequency range there
exists an excess of harmonic excitation, the nature of which
is still a matter of debate.68,69 In Fig. 16 we show the low-
frequency part of the spectra for three different cooling rates.
Since it is customary in experiments to plot not the density of
states itself, but the density of states divided by frequency
squared, we have done likewise. Also included in the figure
is the data from neutron scattering experiments by Buchenau
et al.68,70 Note that these curves contain no adjustable param-
eter. We recognize that qualitatively the results of the experi-
ment and the one of our simulation are quite similar. Further-
more, we see that the agreement between experiment and
simulation improves with decreasing cooling rate. Because

FIG. 15. Spectrum of the system for three different cooling
rates: g51.1431015 K/s ~bold dashed line!, g57.1031013 K/s,
and g54.4431012 K/s ~bold solid line!. The vertical lines give the
location of the peaks as determined in the experiments of Refs.
63–65.

FIG. 16. Density of states divided by n2 for three different cool-
ing rates: g51.1431015 K/s ~bold dashed line!, g57.1031013 K/s,
and g54.4431012 K/s ~bold solid line!. Also included is the result
from neutron scattering experiments ~Refs. 68 and 70!.
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of the above-mentioned gap in the density of state, it can,
however, be expected that even for a significantly smaller
cooling rate the discrepancy between experiment and simu-
lation will not disappear. For this to happen it is likely that
one has to investigate system sizes that are significantly
larger than the one used here, which is, however, currently
too demanding on computer resources.

C. Properties of the system at finite temperatures

Having presented in Sec. III A the cooling-rate depen-
dence of the glass transition and in Sec. III B the cooling-rate
dependence of various properties of the glass at zero tem-
perature we use the remaining of this section to investigate
the equilibrium properties of the system at finite tempera-
tures and to compare these with the ones of the glass. In
particular we want to find out at what temperature which
properties of the glass are frozen in or, in other words, how
the fictive temperature depends on the property. Further-
more, we attempt to understand what the microscopic reason
is for the occurrence of the density anomaly.
In order to address these questions we saved some of the

configurations of the system during the cooling run with the
slowest cooling rate and analyzed these configurations at se-
lected temperatures. In particular we investigated configura-
tions at Tb57000 K, the highest temperature, at Tb54840
K, the location of the local maximum in the density, and at
Tb53220 K, the temperature of the local minimum in the
density between the temperature of the density maximum
and zero temperature ~see Fig. 4!. In the previous subsection
we have concluded that for the smallest cooling rate the glass
transition temperature is around 2900 K ~see Fig. 2!. Thus
we expect that the results at the three selected finite tempera-
tures are all equilibrium results, provided that the glass tran-
sition temperature does not depend too strongly on the quan-
tity investigated ~remember that the glass transition
temperatures presented in Fig. 2 are, strictly speaking, only
valid for the enthalpy!.
The comparison of the structure at finite and zero tem-

peratures was done in two ways. One was to compute for the
configurations at finite temperatures the same quantities that
we have investigated at zero temperature, such as the radial
distribution function, and to compare these quantities with
the ones obtained for the glass at zero temperature. The sec-
ond way was to take these configurations, to determine their
intrinsic structure71 by relaxing the enthalpy via a steepest
descent procedure, to compute also for these relaxed con-
figurations the quantities that we investigated for the glass,
and to compare again. Following Stillinger and Weber we
will call in the following the properties of the system ~such
as, e.g., the density! that are obtained from the relaxed con-
figurations ‘‘intrinsic’’ properties ~e.g., intrinsic density!.
Note that doing a steepest descent procedure at Tb57000 K
is equivalent to use an infinitely fast cooling rate. Thus the
so-obtained result can also be related to the ones of the pre-
vious subsection.
The first quantity we start with is the enthalpy. For the

not-relaxed configuration the value of H(Tb) can be read off
from Fig. 1. The values of the enthalpy for the relaxed con-
figurations are included in Fig. 6 as horizontal lines. We see
that the higher the temperature, the higher the value of the

intrinsic enthalpy. At the two highest temperatures, its value
is larger than the values obtained from quenches with differ-
ent cooling rates. This is consistent with the observation that
these two temperatures are larger than the glass transition
temperatures found for the various cooling rates ~see Fig. 2!.
For the lowest temperature, i.e., Tb53220 K, the value of the
intrinsic enthalpy is about the same as Hf obtained for the
cooling rate g53.5531013 K/s ~see Fig. 6!. From Fig. 2 we
recognize that for this cooling rate the glass transition tem-
perature is about 3050 K, which is reasonably close to 3220
K, the considered temperature of the system. Thus we find
that the temperature of the glass transition, as determined in
the way described in Sec. III A, gives a reasonable estimate
for the temperature at which the system falls out of equilib-
rium with respect to the enthalpy as observable.
A similar result is found for the case of the density. In

Fig. 7 the horizontal lines give the values of the density of
the relaxed configurations at the three temperatures consid-
ered. From this graph we recognize that for the two higher
temperatures the density is larger than the ones obtained
from the quenches with the different cooling rates. Thus this
is again in accordance with the observation that the glass
transition temperature of these quenches is below these two
higher temperatures ~see Fig. 2!. For the lowest temperature,
i.e., 3220 K, the density we find for the relaxed configura-
tions is comparable to the one we found for a quench with a
cooling rate in the range 4.4431012 K/s <g<3.5531013
K/s, which corresponds to a range of glass transition tem-
peratures ~see Fig. 2! of 2900 K <Tg<3050 K. Thus also in
the case of the density the glass temperature is a reasonable
estimate for the temperature at which the system falls out of
equilibrium.
From Fig. 7 we also recognize that, to within the error

bars, the intrinsic density at 7000 and 4840 K is the same.
Furthermore, we see that when the temperature is lowered to
3220 K, the intrinsic density changes relatively strong and
then remains almost constant when the temperature is low-
ered further ~as can be recognized from the fact that r f de-
pends only weakly on g , when the cooling rate is not too
large, even though the corresponding glass transition tem-
perature is still decreasing in this range of g). Thus we con-
clude that the intrinsic density can be considered to be es-
sentially constant for temperatures above 4840 K, the
location of the anomaly in the density, and below 3220 K,
the location of the local minimum of the density, and that the
intrinsic density changes mainly in the temperature range
between the local maximum and the local minimum of the
density. Note that this temperature dependence of the intrin-
sic density is in stark contrast with the one of the density. For
the latter we find that it is changing at all temperatures and
that it shows a local maximum and a local minimum whereas
the temperature dependence of the former seems to be much
simpler. Thus it seems that the intrinsic structure of the net-
work changes mainly in the temperature interval between the
mentioned maximum and minimum.
In order to study this effect in more detail we investigate

the radial distribution function g(r). In Fig. 17 we show this
quantity for the Si-O correlation without the relaxation @Fig.
17~a!# and after the relaxation @Fig. 17~b!#. Also included are
the curves we obtained from the quench with the smallest
cooling rate ~curves labeled with T50 K!. From panel ~a!
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we recognize that g(r) depends quite strongly on the tem-
perature in that the height of the individual peaks and
minima become more pronounced. This effect is most promi-
nent for the first-nearest-neighbor peak @inset of Fig. 17~a!#.
This change with temperature takes place throughout the
whole temperature range investigated. This is not the case
with the intrinsic g(r) @panel ~b!#. We see that in this case
the curves corresponding to Tb57000 K and Tb54840 K are
almost the same. They differ, however, significantly from the
curve at Tb53220 K, which in turn is very similar to the
curve for T50 K. Thus, as in the case of the density, we
come also here to the conclusion that the intrinsic structure
of the network is changing mainly in the temperature range
between the local maximum and the local minimum of the
density. Similar results were found for the intrinsic radial
distribution functions for Si-Si and O-O,27 and thus we will
not show these functions here.
Equipped with the radial distribution functions we can

identify the nearest neighbors of every particle via the loca-
tion of the first minimum in the radial distribution function at
the corresponding temperature. The values for rmin

ab at finite
temperatures are given in Table III. As in the case of the
radial distribution function we find that these distribution
functions show a relatively regular dependence on

temperature.27 An exception, however, seems to be the dis-
tribution function for the O-O pairs. We find that this distri-
bution function depends only weakly on temperature for
T<3220 K but then changes strongly when the temperature
is lowered to T50 K in that it shifts its maximum from
z58 to z56 and becomes peaked much stronger. The rea-
son for this is likely to be the opening of the network with
decreasing temperature. However, why this change is so pro-
nounced and why it takes place in the temperature range
below 3220 K and not as the other quantities in the tempera-
ture range 3220 K <T<4840 K is unclear.
The distribution functions for the intrinsic coordination

numbers show the usual dependence on temperature in that
they show only a weak temperature dependence for
T<3220 K and T>4840 K, and a much stronger dependence
in the temperature range 3220 K <T<4840 K. Thus also for
these quantities the relevant changes take place in the tem-
perature range between the local maximum and the local
minimum in the density.
The changing of the structure of the network can also be

studied well with the help of the angles between the various
atoms, which are shown in Fig. 18. The distributions of the
intrinsic angles at Tb54840 K and at Tb53220 K are very
similar to the ones at Tb57000 K and T50 K,
respectively.27 Thus also in this case the intrinsic structure is
essentially independent of temperature for T higher than
4840 K and for temperatures lower than 3220 K. Only in the
temperature range 3220 K <T<4840 K does the distribution
of the intrinsic angles change significantly. In contrast to this
we see that the distribution of the angles, i.e., without the
relaxation, depends on T for the whole temperature range. In
particular we find @see Fig. 18~a!#, that the distribution for
the angle O-Si-O is very broad at high temperatures and
becomes gradually narrower when T is decreased. Thus we
find that the tetrahedra are significantly distorted at high tem-
perature, in accordance with the observation that the first-
nearest-neighbor peak in gSiO(r) becomes relatively broad at
high temperatures @see Fig. 17~a!#.
Also the distribution of the angle Si-O-Si changes signifi-

cantly with temperature, Fig. 18~b!. The position of the large
peak that is present at T50 K moves to smaller angles and
becomes much broader when the temperature increases.
Since this angle measures the relative orientation between
two neighboring tetrahedra, this observation is in accordance
with the picture of the densifying network, when the tem-
perature is increased. The same conclusion can be drawn
from the distribution of the O-O-O angle, shown in Fig.
18~c!. The position of the broad secondary peak, correspond-
ing to the angle between an oxygen atom on one tetrahedron,
a bridging oxygen, and an oxygen on a second tetrahedron
~O#1-O#3-O#2 in Fig. 11!, moves to smaller angles with
increasing temperature, indicating that the two tetrahedra

FIG. 17. Radial distribution function g(r) for the Si-O correla-
tion at Tb57000 K, Tb54840 K, and Tb53220 K. Also included is
the g(r) as obtained from quenching the system to T50 K with the
smallest cooling rate. ~a! Without relaxation. ~b! With relaxation.

TABLE III. Location of the first minimum in the radial distri-
bution function g(r).

Tb rmin
SiSi @Å# rmin

SiO @Å# rmin
OO @Å#

7000 K 3.80 2.50 3.70
4838 K 3.37 2.50 3.60
3220 K 3.37 2.30 3.25
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move closer to each other. At the same time the main peak,
corresponding to the angle of three oxygen atoms on the
same tetrahedron, decreases its height and becomes broader,
showing that the tetrahedra are more distorted at high tem-
peratures.

The last structural quantity we investigate is the distribu-
tion of the size of the rings which is shown in Fig. 19. We
see that also in this case the distribution of the intrinsic size
of the rings ~see the inset of Fig. 19! depends significantly on
the temperature only in the temperature range 3220 K
<T<4840 K. The distribution function of the ring size with-
out the relaxation shows, however, a temperature depen-
dence that extends throughout the whole temperature range
investigated. We see that this distribution becomes signifi-
cantly broader when the temperature is increased and that the
main change is that the short rings become more frequent.
We also note that at high temperatures we find some ‘‘rings’’
that have a size n51, by which we denote ‘‘rings’’ that are
not closed, i.e., which are dangling bonds. These types of
rings disappear when the temperature is less than 4840 K,
showing that from an energetic point of view such configu-
rations are unfavorable.
The final quantity we studied was the spectrum of the

system, which is shown in Fig. 20. The intrinsic spectrum,
shown in Fig. 20~a!, shows that the main effect of finite
temperature is to smear out the double-peak structure at high
frequencies and to fill up the gap between this double-peak
structure and the broad mountain at lower frequencies. The
main change in the form of the spectrum takes again place in
the temperature interval 3220 K <Tb<4840 K.
The spectrum at finite temperature is quite different from

the intrinsic one, since the dynamical matrix has also nega-
tive eigenvalues. It is customary to plot the distribution of
the square root of these negative eigenvalues on the negative
frequency axis.61 We see that at finite temperatures the
double peak at high frequencies is reduced to a shoulder of
the large mountain at lower frequencies. This is the case
even for Tb53220 K, i.e., the temperature for which we
have found that most structural properties of the system are
very similar to the ones at T50 K. Thus we find that this
dynamic quantity shows a much stronger temperature depen-
dence at low temperatures than the structural quantities. The
peak in the distribution at negative frequencies, however,

FIG. 18. Distribution function for various angles at Tb57000 K,
Tb54840 K, and Tb53220 K ~without relaxation!. Also included is
the distribution function as obtained from quenching the system to
T50 K with the smallest cooling rate. ~a! O-Si-O. ~b! Si-O-Si. ~c!
O-O-O.

FIG. 19. Distribution of the size of the rings at Tb57000 K,
Tb54840 K, and Tb53220 K. Also included is the distribution
function as obtained from quenching the system to T50 K with the
smallest cooling rate. Main figure: without relaxation. Inset: with
relaxation.
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shows a regular dependence on temperature, thus being more
similar to the structural quantities.

IV. SUMMARY AND CONCLUSIONS

We have presented the results of a large scale computer
simulation in which we investigated how the properties of
silica glass depend on the cooling rate with which the glass
was produced. Experiments in which such cooling rate de-
pendences were investigated have focused, so far, only on
the macroscopic properties of glasses, such as the density or
the glass transition temperature.72 One of the main goals of
our investigation was to study how the microscopic proper-
ties of the glass are affected by the cooling rate and see how
their cooling-rate dependence compares with the one of mac-
roscopic properties. The second goal of our study was to test
whether the silica potential proposed by van Beest, Kramer,
and van Santen ~BKS!, which so far has only been used to
describe crystalline and pressurized amorphous silica, is also

suitable to model vitreous silica produced via a quench in
temperature.
In our work we first focused on the macroscopic quanti-

ties, in order to see whether the cooling-rate dependence of
these quantities show a similar behavior as the ones observed
in real experiments. We found that this is indeed the case, in
that, e.g., the dependence of the glass transition temperature
on the cooling rate is in qualitative accordance with the one
of real materials. If this observed cooling-rate dependence is
extrapolated to experimental cooling rates, this accordance
seems also to be correct in a semiquantitative way.
We also observed that, if the cooling rate is sufficiently

small, the density shows an anomalous behavior in that it has
a maximum at around 4800 K. Such an anomaly is also
found in real silica, although at a significantly smaller tem-
perature ~1820 K!. This shows that with respect to this phe-
nomenon the BKS potential is able to give at least a qualita-
tively correct description of noncrystalline silica.
By investigating the properties of the glass at zero tem-

perature we find that the enthalpy, the density, and the ther-
mal expansion coefficient depend significantly on the cooling
rate. The densities we find are in agreement with the ones of
real silica and an extrapolation of the thermal expansion co-
efficient to experimental cooling rates is also consistent with
the experimental values for this quantity. Thus we find also
in this case that the BKS potential is a good model for real
silica glass.
After having made sure that the BKS potential gives a

reasonably good description of the macroscopic properties of
amorphous silica and that our simulations are able to repro-
duce the cooling-rate dependence of the glass transition at
least in a qualitative way we thus could move on to investi-
gate how the microscopic properties of the glass depend on
the cooling rate. We found that the radial distribution func-
tions showed a pronounced dependence on the cooling rate
in that the individual peaks become significantly more pro-
nounced with decreasing cooling rate. From this and the fact
that the first sharp diffraction peak in the structure factor also
shows a significant cooling-rate dependence towards becom-
ing more pronounced with decreasing cooling rate, we con-
clude that the structure of the system at short and intermedi-
ate distances becomes more ordered. This conclusion is also
corroborated by our observation that the distribution of the
bond angles becomes more structured and that the various
coordination numbers show the tendency that the basic units
in the network become more ideal, i.e., to become regular
tetrahedra. That also the intermediate-range order of the
glass increases with decreasing cooling rate can also be in-
ferred from the observation that in the distribution of the size
of the rings the frequency of rings of size 6 increases with
decreasing cooling rate, which shows that the local structure
of the system approaches the one of b-cristobalite.
Also the spectrum of the system, as computed from the

eigenvalues of the dynamical matrix, shows a noticeable de-
pendence on the cooling rate in that the two main peaks at
high frequencies become more pronounced when g is low-
ered. This shows that the neighborhoods of the individual
atoms show less variation from atom to atom with decreasing
cooling rate. In addition we find that the location of these
two peaks is very close to the one observed in experiments,
demonstrating that the BKS potential is reliable with respect

FIG. 20. Spectrum of the system at Tb57000 K, Tb54840 K,
and Tb53220 K. Also included is the spectrum as obtained from
quenching the system to T50 K with the smallest cooling rate. The
vertical lines gives the location of the peaks as determined in the
experiment of Refs. 63–65. ~a! With relaxation. ~b! Without relax-
ation. The distribution for negative frequencies corresponds to
negative eigenvalues of the dynamical matrix.
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to this quantity as well. Furthermore, we have shown that
also at low frequencies the spectrum is in fair agreement with
experiment.
Finally we investigated how the structure of the glass at

finite temperatures differs from the one at zero temperature
in order to find out how the glass transition is affecting the
temperature dependence of various quantities. We find that
the radial distribution functions show a smooth dependence
on temperature, thus showing that the glass transition is not
accompanied by a dramatic change in this quantity. This is
the case for most other structural quantities considered.
However, if we look at the intrinsic quantities, we note that
they show a much more pronounced temperature depen-
dence. Roughly speaking we can say that above and below
the glass transition the intrinsic quantities are essentially in-
dependent of temperature, that they change, however, sig-
nificantly in the vicinity of the glass transition. This shows
that these quantities are likely to be a sensitive indicator for
when the system is undergoing the glass transition in accor-
dance with the findings of Stillinger and Weber71 and Jóns-
son and Andersen.73
From the temperature dependence of the various struc-

tural quantities we gain some understanding on the nature of
the density anomaly. We find that the network becomes more
compact when the temperature is lowered from high tem-
peratures to 4800 K, the temperature at which the anomaly is
observed. This shrinking is a complicated process in which
certain distances increase, whereas others decrease and
where also the distribution of the various angles changes
significantly with temperature. When the temperature is de-
creased even further the density decreases again which can

be understood from a microscopic point of view by a change
in the distribution of the various angles which lead to an
opening up of the network. The nearest-neighbor bond dis-
tances, however, do not change significantly in this tempera-
ture range, showing that the relative positions of the tetrahe-
dra among each other are more important for the anomaly
than the geometry of the tetrahedra.
To conclude we can say that we have shown that, similar

to fragile glass formers,14 also the properties of strong
glasses show a noticable dependence on the cooling rate with
which the glass was produced. In particular we showed that
such dependences can affect the microscopic quantities much
more than they affect the macroscopic ones and that it might
therefore also be interesting to investigate in real experi-
ments how microscopic quantities depend on the cooling
rate. In addition we have shown that the two-body potential
proposed by van Beest et al. for crystalline silica is also able
to give a surprisingly good description of amorphous silica,
thus making it possible to investigate these types of glasses
in a relatively efficient manner.
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20 J. P. Rino, I. Ebbsjö, R. K. Kalia, A. Nakano, and P. Vashishta,
Phys. Rev. B 47, 3053 ~1993!.

21 J. Badro, J.-L. Barrat, and P. Gillet, Phys. Rev. Lett. 76, 772
~1996!.

22W. Jin, P. Vashishta, R. K. Kalia, and J. P. Rino, Phys. Rev. B 48,
9359 ~1993!.

23R. G. della Valle and E. Venuti, Chem. Phys. 179, 411 ~1994!.
24S. K. Mitra, Philos. Mag. B 45, 529 ~1982!.
25S. H. Garofalini, J. Non-Cryst. Solids 63, 337 ~1984!.
26K. Vollmayr and W. Kob, Ber. Bunsenges. Phys. Chem. 100,
1399 ~1996!.

27K. Vollmayr, Ph.D. thesis, Universität Mainz, 1995.
28J. S. Tse and D. D. Klug, Phys. Rev. Lett. 67, 3559 ~1991!; J.
Chem. Phys. 95, 9176 ~1991!; J. S. Tse, D. D. Klug, and Y. Le
Page, Phys. Rev. B 46, 5933 ~1992!; Phys. Rev. Lett. 69, 3647
~1992!; J. S. Tse, D. D. Klug, and D. C. Allan, Phys. Rev. B 51,
16 392 ~1995!.

29M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids
~Oxford University Press, New York, 1990!.

30H. C. Andersen, J. Chem. Phys. 72, 2384 ~1980!; see also Ref. 9.
31W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery, Numerical Recipes in Fortran, 2nd ed. ~Cambridge Uni-
versity Press, Cambridge, England, 1992!.

32A. Q. Tool and C. G. Eichlin, J. Opt. Soc. Am. 14, 276 ~1931!.
33C. A. Angell and L. M. Torell, J. Chem. Phys. 78, 937 ~1983!.
34C. A. Angell, J. Chem. Phys. Solids 49, 863 ~1988!.
35See, e.g., K. Hofer, E. Mayer, and G. P. Johari, J. Phys. Chem.
95, 7100 ~1991!; C. L. Jackson and G. B. McKenna, J. Non-
Cryst. Solids 131-133, 221 ~1991!; J. Zhang, G. Liu, and J.
Jonas, J. Phys. Chem. 96, 3478 ~1992!; P. Pissis, D. Daoukaki-
Diamanti, L. Apekis, and C. Christodoulides, J. Phys. Condens.
Matter 6, L325 ~1994!; J. Schüller, Y. B. Mel’nichenko, R.
Richert, and E. W. Fischer, Phys. Rev. Lett. 73, 2224 ~1994!; T.
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57D. Stöffler and J. Arndt, Naturwissenschaften 56, 100 ~1969!.
58R. J. Bell and P. Dean, Trans. Faraday Soc. 50, 55 ~1970!; R.
Biswas, A. M. Bouchard, W. A. Kamitakahara, G. S. Grest, and
C. M. Soukoulis, Phys. Rev. Lett. 60, 2280 ~1988!.

59B. B. Laird and H. R. Schober, Phys. Rev. Lett. 66, 636 ~1991!;
H. R. Schober and B. B. Laird, Phys. Rev. B 44, 6746 ~1991!.

60N. G. Almarza, E. Enciso, and F. J. Bermejo, J. Chem. Phys. 99,
6876 ~1993!; M. Garcia-Hernandez, F. J. Bermejo, B. Fåk, J. L.
Martinez, E. Enciso, N. G. Almarza, and A. Criado, Phys. Rev.
B 48, 149 ~1993!; C. Oligschleger and H. R. Schober, Physica A
201, 391 ~1993!; H. R. Schober, C. Oligschleger, and B. B.
Laird, J. Non-Cryst. Solids 156-158, 965 ~1993!; H. R. Schober
and C. Oligschleger, Nukleonika 39, 185 ~1994!; C. Olig-
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68U. Buchenau, M. Prager, N. Nücker, A. J. Dianoux, N. Ahmad,
and W. A. Phillips, Phys. Rev. B. 34, 5665 ~1986!.
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