/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "math.h" #include "string.h" #include "stdlib.h" #include "lattice.h" #include "update.h" #include "domain.h" #include "comm.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; #define MIN(A,B) ((A) < (B)) ? (A) : (B) #define MAX(A,B) ((A) > (B)) ? (A) : (B) #define BIG 1.0e30 enum{NONE,SC,BCC,FCC,DIAMOND,SQ,SQ2,HEX,CUSTOM,HCP}; /* ---------------------------------------------------------------------- */ Lattice::Lattice(LAMMPS *lmp, int narg, char **arg) : Pointers(lmp) { nbasis = 0; basis = NULL; // parse style arg if (narg < 1) error->all("Illegal lattice command"); if (strcmp(arg[0],"none") == 0) style = NONE; else if (strcmp(arg[0],"sc") == 0) style = SC; else if (strcmp(arg[0],"bcc") == 0) style = BCC; else if (strcmp(arg[0],"fcc") == 0) style = FCC; else if (strcmp(arg[0],"hcp") == 0) style = HCP; else if (strcmp(arg[0],"diamond") == 0) style = DIAMOND; else if (strcmp(arg[0],"sq") == 0) style = SQ; else if (strcmp(arg[0],"sq2") == 0) style = SQ2; else if (strcmp(arg[0],"hex") == 0) style = HEX; else if (strcmp(arg[0],"custom") == 0) style = CUSTOM; else error->all("Illegal lattice command"); if (style == NONE) { if (narg > 1) error->all("Illegal lattice command"); return; } // check that lattice matches dimension // style CUSTOM can be either 2d or 3d int dimension = domain->dimension; if (dimension == 2) { if (style == SC || style == BCC || style == FCC || style == DIAMOND || style == HCP) error->all("Lattice style incompatible with simulation dimension"); } if (dimension == 3) { if (style == SQ || style == SQ2 || style == HEX) error->all("Lattice style incompatible with simulation dimension"); } // scale = conversion factor between lattice and box units if (narg < 2) error->all("Illegal lattice command"); scale = atof(arg[1]); if (scale <= 0.0) error->all("Illegal lattice command"); // set basis atoms for each style // x,y,z = fractional coords within unit cell // style CUSTOM will be defined by optional args if (style == SC) { add_basis(0.0,0.0,0.0); } else if (style == BCC) { add_basis(0.0,0.0,0.0); add_basis(0.5,0.5,0.5); } else if (style == FCC) { add_basis(0.0,0.0,0.0); add_basis(0.5,0.5,0.0); add_basis(0.5,0.0,0.5); add_basis(0.0,0.5,0.5); } else if (style == HCP) { add_basis(0.,0.,0.); add_basis(.5,.5,0.); add_basis(.5,.25,.5); add_basis(.0,.75,.5); } else if (style == SQ) { add_basis(0.0,0.0,0.0); } else if (style == SQ2) { add_basis(0.0,0.0,0.0); add_basis(0.5,0.5,0.0); } else if (style == HEX) { add_basis(0.0,0.0,0.0); add_basis(0.5,0.5,0.0); } else if (style == DIAMOND) { add_basis(0.0,0.0,0.0); add_basis(0.0,0.5,0.5); add_basis(0.5,0.0,0.5); add_basis(0.5,0.5,0.0); add_basis(0.25,0.25,0.25); add_basis(0.25,0.75,0.75); add_basis(0.75,0.25,0.75); add_basis(0.75,0.75,0.25); } // set defaults for optional args origin[0] = origin[1] = origin[2] = 0.0; orientx[0] = 1; orientx[1] = 0; orientx[2] = 0; orienty[0] = 0; orienty[1] = 1; orienty[2] = 0; orientz[0] = 0; orientz[1] = 0; orientz[2] = 1; int spaceflag = 0; a1[0] = 1.0; a1[1] = 0.0; a1[2] = 0.0; a2[0] = 0.0; a2[1] = 1.0; a2[2] = 0.0; a3[0] = 0.0; a3[1] = 0.0; a3[2] = 1.0; if (style == HEX) a2[1] = sqrt(3.0); if (style == HCP) { a2[1] = sqrt(3.0); a3[2] = sqrt(8./3.); } // process optional args int iarg = 2; while (iarg < narg) { if (strcmp(arg[iarg],"origin") == 0) { if (iarg+4 > narg) error->all("Illegal lattice command"); origin[0] = atof(arg[iarg+1]); origin[1] = atof(arg[iarg+2]); origin[2] = atof(arg[iarg+3]); if (origin[0] < 0.0 || origin[0] >= 1.0 || origin[1] < 0.0 || origin[1] >= 1.0 || origin[2] < 0.0 || origin[2] >= 1.0) error->all("Illegal lattice command"); iarg += 4; } else if (strcmp(arg[iarg],"orient") == 0) { if (iarg+5 > narg) error->all("Illegal lattice command"); int dim; if (strcmp(arg[iarg+1],"x") == 0) dim = 0; else if (strcmp(arg[iarg+1],"y") == 0) dim = 1; else if (strcmp(arg[iarg+1],"z") == 0) dim = 2; else error->all("Illegal lattice command"); int *orient; if (dim == 0) orient = orientx; else if (dim == 1) orient = orienty; else if (dim == 2) orient = orientz; orient[0] = atoi(arg[iarg+2]); orient[1] = atoi(arg[iarg+3]); orient[2] = atoi(arg[iarg+4]); iarg += 5; } else if (strcmp(arg[iarg],"spacing") == 0) { if (iarg+4 > narg) error->all("Illegal lattice command"); spaceflag = 1; xlattice = atof(arg[iarg+1]); ylattice = atof(arg[iarg+2]); zlattice = atof(arg[iarg+3]); iarg += 4; } else if (strcmp(arg[iarg],"a1") == 0) { if (iarg+4 > narg) error->all("Illegal lattice command"); if (style != CUSTOM) error->all("Invalid option in lattice command for non-custom style"); a1[0] = atof(arg[iarg+1]); a1[1] = atof(arg[iarg+2]); a1[2] = atof(arg[iarg+3]); iarg += 4; } else if (strcmp(arg[iarg],"a2") == 0) { if (iarg+4 > narg) error->all("Illegal lattice command"); if (style != CUSTOM) error->all("Invalid option in lattice command for non-custom style"); a2[0] = atof(arg[iarg+1]); a2[1] = atof(arg[iarg+2]); a2[2] = atof(arg[iarg+3]); iarg += 4; } else if (strcmp(arg[iarg],"a3") == 0) { if (iarg+4 > narg) error->all("Illegal lattice command"); if (style != CUSTOM) error->all("Invalid option in lattice command for non-custom style"); a3[0] = atof(arg[iarg+1]); a3[1] = atof(arg[iarg+2]); a3[2] = atof(arg[iarg+3]); iarg += 4; } else if (strcmp(arg[iarg],"basis") == 0) { if (iarg+4 > narg) error->all("Illegal lattice command"); if (style != CUSTOM) error->all("Invalid option in lattice command for non-custom style"); double x = atof(arg[iarg+1]); double y = atof(arg[iarg+2]); double z = atof(arg[iarg+3]); if (x < 0.0 || x >= 1.0 || y < 0.0 || y >= 1.0 || z < 0.0 || z >= 1.0) error->all("Illegal lattice command"); add_basis(x,y,z); iarg += 4; } else error->all("Illegal lattice command"); } // check settings for errors if (nbasis == 0) error->all("No basis atoms in lattice"); if (!orthogonal()) error->all("Lattice orient vectors are not orthogonal"); if (!right_handed()) error->all("Lattice orient vectors are not right-handed"); if (colinear()) error->all("Lattice primitive vectors are colinear"); if (dimension == 2) { if (origin[2] != 0.0) error->all("Lattice settings are not compatible with 2d simulation"); if (orientx[2] != 0 || orienty[2] != 0 || orientz[0] != 0 || orientz[1] != 0) error->all("Lattice settings are not compatible with 2d simulation"); if (a1[2] != 0.0 || a2[2] != 0.0 || a3[0] != 0.0 || a3[1] != 0.0) error->all("Lattice settings are not compatible with 2d simulation"); } if (spaceflag) { if (xlattice <= 0.0 || ylattice <= 0.0 || zlattice <= 0.0) error->all("Lattice spacings are invalid"); } // reset scale for LJ units (input scale is rho*) // scale = (Nbasis/(Vprimitive * rho*)) ^ (1/dim) if (strcmp(update->unit_style,"lj") == 0) { double vec[3]; cross(a2,a3,vec); double volume = dot(a1,vec); scale = pow(nbasis/volume/scale,1.0/dimension); } // initialize lattice <-> box transformation matrices setup_transform(); // convert 8 corners of primitive unit cell from lattice coords to box coords // min to max = bounding box around the pts in box space // xlattice,ylattice,zlattice = extent of bbox in box space // set xlattice,ylattice,zlattice to 0.0 initially // since bbox uses them to shift origin (irrelevant for this computation) if (spaceflag == 0) { double xmin,ymin,zmin,xmax,ymax,zmax; xmin = ymin = zmin = BIG; xmax = ymax = zmax = -BIG; xlattice = ylattice = zlattice = 0.0; bbox(0,0.0,0.0,0.0,xmin,ymin,zmin,xmax,ymax,zmax); bbox(0,1.0,0.0,0.0,xmin,ymin,zmin,xmax,ymax,zmax); bbox(0,0.0,1.0,0.0,xmin,ymin,zmin,xmax,ymax,zmax); bbox(0,1.0,1.0,0.0,xmin,ymin,zmin,xmax,ymax,zmax); bbox(0,0.0,0.0,1.0,xmin,ymin,zmin,xmax,ymax,zmax); bbox(0,1.0,0.0,1.0,xmin,ymin,zmin,xmax,ymax,zmax); bbox(0,0.0,1.0,1.0,xmin,ymin,zmin,xmax,ymax,zmax); bbox(0,1.0,1.0,1.0,xmin,ymin,zmin,xmax,ymax,zmax); xlattice = xmax - xmin; ylattice = ymax - ymin; zlattice = zmax - zmin; } else { xlattice *= scale; ylattice *= scale; zlattice *= scale; } // print lattice spacings if (comm->me == 0) { if (screen) fprintf(screen,"Lattice spacing in x,y,z = %g %g %g\n", xlattice,ylattice,zlattice); if (logfile) fprintf(logfile,"Lattice spacing in x,y,z = %g %g %g\n", xlattice,ylattice,zlattice); } } /* ---------------------------------------------------------------------- */ Lattice::~Lattice() { memory->destroy_2d_double_array(basis); } /* ---------------------------------------------------------------------- check if 3 orientation vectors are mutually orthogonal ------------------------------------------------------------------------- */ int Lattice::orthogonal() { if (orientx[0]*orienty[0] + orientx[1]*orienty[1] + orientx[2]*orienty[2]) return 0; if (orienty[0]*orientz[0] + orienty[1]*orientz[1] + orienty[2]*orientz[2]) return 0; if (orientx[0]*orientz[0] + orientx[1]*orientz[1] + orientx[2]*orientz[2]) return 0; return 1; } /* ---------------------------------------------------------------------- check righthandedness of orientation vectors x cross y must be in same direction as z ------------------------------------------------------------------------- */ int Lattice::right_handed() { int xy0 = orientx[1]*orienty[2] - orientx[2]*orienty[1]; int xy1 = orientx[2]*orienty[0] - orientx[0]*orienty[2]; int xy2 = orientx[0]*orienty[1] - orientx[1]*orienty[0]; if (xy0*orientz[0] + xy1*orientz[1] + xy2*orientz[2] <= 0) return 0; return 1; } /* ---------------------------------------------------------------------- check colinearity of each pair of primitive vectors ------------------------------------------------------------------------- */ int Lattice::colinear() { double vec[3]; cross(a1,a2,vec); if (dot(vec,vec) == 0.0) return 1; cross(a2,a3,vec); if (dot(vec,vec) == 0.0) return 1; cross(a1,a3,vec); if (dot(vec,vec) == 0.0) return 1; return 0; } /* ---------------------------------------------------------------------- initialize lattice <-> box transformation matrices ------------------------------------------------------------------------- */ void Lattice::setup_transform() { double length; // primitive = 3x3 matrix with primitive vectors as columns primitive[0][0] = a1[0]; primitive[1][0] = a1[1]; primitive[2][0] = a1[2]; primitive[0][1] = a2[0]; primitive[1][1] = a2[1]; primitive[2][1] = a2[2]; primitive[0][2] = a3[0]; primitive[1][2] = a3[1]; primitive[2][2] = a3[2]; // priminv = inverse of primitive double determinant = primitive[0][0]*primitive[1][1]*primitive[2][2] + primitive[0][1]*primitive[1][2]*primitive[2][0] + primitive[0][2]*primitive[1][0]*primitive[2][1] - primitive[0][0]*primitive[1][2]*primitive[2][1] - primitive[0][1]*primitive[1][0]*primitive[2][2] - primitive[0][2]*primitive[1][1]*primitive[2][0]; if (determinant == 0.0) error->all("Degenerate lattice primitive vectors"); priminv[0][0] = (primitive[1][1]*primitive[2][2] - primitive[1][2]*primitive[2][1]) / determinant; priminv[1][0] = (primitive[1][2]*primitive[2][0] - primitive[1][0]*primitive[2][2]) / determinant; priminv[2][0] = (primitive[1][0]*primitive[2][1] - primitive[1][1]*primitive[2][0]) / determinant; priminv[0][1] = (primitive[0][2]*primitive[2][1] - primitive[0][1]*primitive[2][2]) / determinant; priminv[1][1] = (primitive[0][0]*primitive[2][2] - primitive[0][2]*primitive[2][0]) / determinant; priminv[2][1] = (primitive[0][1]*primitive[2][0] - primitive[0][0]*primitive[2][1]) / determinant; priminv[0][2] = (primitive[0][1]*primitive[1][2] - primitive[0][2]*primitive[1][1]) / determinant; priminv[1][2] = (primitive[0][2]*primitive[1][0] - primitive[0][0]*primitive[1][2]) / determinant; priminv[2][2] = (primitive[0][0]*primitive[1][1] - primitive[0][1]*primitive[1][0]) / determinant; // rotaterow = 3x3 matrix with normalized orient vectors as rows int lensq = orientx[0]*orientx[0] + orientx[1]*orientx[1] + orientx[2]*orientx[2]; length = sqrt((double) lensq); if (length == 0.0) error->all("Zero-length lattice orient vector"); rotaterow[0][0] = orientx[0] / length; rotaterow[0][1] = orientx[1] / length; rotaterow[0][2] = orientx[2] / length; lensq = orienty[0]*orienty[0] + orienty[1]*orienty[1] + orienty[2]*orienty[2]; length = sqrt((double) lensq); if (length == 0.0) error->all("Zero-length lattice orient vector"); rotaterow[1][0] = orienty[0] / length; rotaterow[1][1] = orienty[1] / length; rotaterow[1][2] = orienty[2] / length; lensq = orientz[0]*orientz[0] + orientz[1]*orientz[1] + orientz[2]*orientz[2]; length = sqrt((double) lensq); if (length == 0.0) error->all("Zero-length lattice orient vector"); rotaterow[2][0] = orientz[0] / length; rotaterow[2][1] = orientz[1] / length; rotaterow[2][2] = orientz[2] / length; // rotatecol = 3x3 matrix with normalized orient vectors as columns rotatecol[0][0] = rotaterow[0][0]; rotatecol[1][0] = rotaterow[0][1]; rotatecol[2][0] = rotaterow[0][2]; rotatecol[0][1] = rotaterow[1][0]; rotatecol[1][1] = rotaterow[1][1]; rotatecol[2][1] = rotaterow[1][2]; rotatecol[0][2] = rotaterow[2][0]; rotatecol[1][2] = rotaterow[2][1]; rotatecol[2][2] = rotaterow[2][2]; } /* ---------------------------------------------------------------------- convert lattice coords to box coords input x,y,z = point in lattice coords output x,y,z = point in box coords transformation: xyz_box = Rotate_row * scale * P * xyz_lattice + offset xyz_box = 3-vector of output box coords Rotate_row = 3x3 matrix = normalized orient vectors as rows scale = scale factor P = 3x3 matrix = primitive vectors as columns xyz_lattice = 3-vector of input lattice coords offset = 3-vector = (xlatt*origin[0], ylatt*origin[1], zlatt*origin[2]) ------------------------------------------------------------------------- */ void Lattice::lattice2box(double &x, double &y, double &z) { double x1 = primitive[0][0]*x + primitive[0][1]*y + primitive[0][2]*z; double y1 = primitive[1][0]*x + primitive[1][1]*y + primitive[1][2]*z; double z1 = primitive[2][0]*x + primitive[2][1]*y + primitive[2][2]*z; x1 *= scale; y1 *= scale; z1 *= scale; double xnew = rotaterow[0][0]*x1 + rotaterow[0][1]*y1 + rotaterow[0][2]*z1; double ynew = rotaterow[1][0]*x1 + rotaterow[1][1]*y1 + rotaterow[1][2]*z1; double znew = rotaterow[2][0]*x1 + rotaterow[2][1]*y1 + rotaterow[2][2]*z1; x = xnew + xlattice*origin[0]; y = ynew + ylattice*origin[1]; z = znew + zlattice*origin[2]; } /* ---------------------------------------------------------------------- convert box coords to lattice coords input x,y,z = point in box coords output x,y,z = point in lattice coords transformation: xyz_latt = P_inv * 1/scale * Rotate_col * (xyz_box - offset) xyz_lattice = 3-vector of output lattice coords P_inv = 3x3 matrix = inverse of primitive vectors as columns scale = scale factor Rotate_col = 3x3 matrix = normalized orient vectors as columns xyz_box = 3-vector of input box coords offset = 3-vector = (xlatt*origin[0], ylatt*origin[1], zlatt*origin[2]) ------------------------------------------------------------------------- */ void Lattice::box2lattice(double &x, double &y, double &z) { x -= xlattice*origin[0]; y -= ylattice*origin[1]; z -= zlattice*origin[2]; double x1 = rotatecol[0][0]*x + rotatecol[0][1]*y + rotatecol[0][2]*z; double y1 = rotatecol[1][0]*x + rotatecol[1][1]*y + rotatecol[1][2]*z; double z1 = rotatecol[2][0]*x + rotatecol[2][1]*y + rotatecol[2][2]*z; x1 /= scale; y1 /= scale; z1 /= scale; x = priminv[0][0]*x1 + priminv[0][1]*y1 + priminv[0][2]*z1; y = priminv[1][0]*x1 + priminv[1][1]*y1 + priminv[1][2]*z1; z = priminv[2][0]*x1 + priminv[2][1]*y1 + priminv[2][2]*z1; } /* ---------------------------------------------------------------------- add a basis atom to list x,y,z = fractional coords within unit cell ------------------------------------------------------------------------- */ void Lattice::add_basis(double x, double y, double z) { basis = memory->grow_2d_double_array(basis,nbasis+1,3,"lattice:basis"); basis[nbasis][0] = x; basis[nbasis][1] = y; basis[nbasis][2] = z; nbasis++; } /* ---------------------------------------------------------------------- return x dot y ------------------------------------------------------------------------- */ double Lattice::dot(double *x, double *y) { return x[0]*y[0] + x[1]*y[1] + x[2]*y[2]; } /* ---------------------------------------------------------------------- z = x cross y ------------------------------------------------------------------------- */ void Lattice::cross(double *x, double *y, double *z) { z[0] = x[1]*y[2] - x[2]*y[1]; z[1] = x[2]*y[0] - x[0]*y[2]; z[2] = x[0]*y[1] - x[1]*y[0]; } /* ---------------------------------------------------------------------- convert x,y,z from lattice coords to box coords (flag = 0) or vice versa use new point to expand bounding box (min to max) ------------------------------------------------------------------------- */ void Lattice::bbox(int flag, double x, double y, double z, double &xmin, double &ymin, double &zmin, double &xmax, double &ymax, double &zmax) { if (flag == 0) lattice2box(x,y,z); else box2lattice(x,y,z); xmin = MIN(x,xmin); ymin = MIN(y,ymin); zmin = MIN(z,zmin); xmax = MAX(x,xmax); ymax = MAX(y,ymax); zmax = MAX(z,zmax); }