Dear lammps users,

I'm trying to study buckling of thermally fluctuating membranes. The

in-plane stiffness is achieved by bonding the points (atoms) and the bending

is achieved by defining dihedrals. I have periodic boundary conditions as

well.

I need to study the behavior for various values of bond stiffness (K).

Consequently, I need to use a timestep that gives correct dynamics for

different stiffness values. If I'm not mistaken, the correct way is to first

calculate the smallest vibrational period of the system. So my first

question is:

1- Is it possible in LAMMPS to calculate the vibrational frequencies

(periods) to get the smallest period of my system and then calculate the

timestep? (basically eigenvalue analysis).

this is overkill. take hold of a proper text book on MD and look up

energy conservation.

that is for most systems a good measure to determine a suitable time

step. also, look up publications using the same force field on the

same or a similar system. this information is usually transferable.

The stiffest interaction and the lightest atoms set the upper limit

for the time step. if you can time integrate those with sufficient

energy conservation after equilibration and without a thermostat

you've found the right setting. for all atom simulations containing

hydrogen atoms this is often between 0.25 and 0.5 fs for systems

without contraints and 1fs to 2fs for constraining the hydrogen bonds

with fix shake. for systems, that only have heavier atoms,

correspondingly larger (scaling with sqrt(m) for smallest mass, if

memory servers me right).

As suggested in other posts, I have tried different timesteps for the same

system (same velociy seed). I expected to see the same dynamics. Although

the general behavior is the same for different timesteps, they are not

exactly the same. So my second question is:

2- Do we expect to see exactly the same dynamics for systems that have been

run with different timestep or a general agreement would suffice?

again, please consult an MD text book for explaining what is

acceptable and not. please note, that due to using floating point math

and due to floatingpoint math being not associative, even using a

different number of processors, or having a different ordering of the

atoms (e.g. through a different neighbor list update interval),

trajectories can diverge.

I'm attaching parts of the datafile, runfile and two graphs. The graphs are

stress as a function of time for different timesteps. One graph is just the

zoomed in version of the other.

please note, that you are asking questions about the general nature of

MD and nothing that is particular to LAMMPS, and thus your inquiry is

a) mostly off-topic and b) is something that you should have learned

about *before* starting MD simulations and should discuss with your

adviser/tutor not this mailing list. there is much more to be learned

and a mailing list is a poor substitute for a proper tutor (and people

responding on mailing lists get tired having to explain stuff over and

over again, that is well explained in the basic text book literature).

axel.