Two-Temperature model for laser ablation

Dear LAMMPS user,

I am doing project on Laser Shock peening(stainless steel), here I am applying laser energy to the system, heat is generated around 10000 C, and this heat is interact with the system and produces more no.of defects.

So, I am doing same thing in the LAMMPS (MD) ,by using “fix ttm”. Here i am applying heat energy , this heat is transfer to electrons and ions.So for this I can choose the metal units, boundary conditions and parameters(electronic specific heat,electrons density,thermal conductivity,electron velocity,electrons - ions interaction and electronic stopping coefficient) how can calculate these we choose the grid points and temperature.

I have read LAMMPS documents but, I am not understand, Can any bady help me.

input script file


variable C_e equal 0.00144 #Electronic specific heat
variable rho_e equal 0.781 #Electronic density
variable kappa_e equal 0 #Electronic thermal conductivity
variable gamma_p equal 0.277 #Electron - phonons interactions(friction coefficient)
variable gamma_s equal 0.2191 #Electron stoppning (friction coefficient),this value can be calculate by SRIM table
variable v_0 equal 0.0590 #Critical velocity
variable Nx equal 4
variable Ny equal 4
variable Nz equal 4
variable N equal 50

--------------- INITIALIZATION --------------------------------------

units metal
echo both
dimension 3
boundary p p p
atom_style atomic

------------------ ATOM DEFINITION -----------------------------------

lattice bcc 2.855
region simbox block 0 90 0 90 0 90
create_box 1 simbox
create_atoms 1 region simbox

------------------------ FORCE FIELDS -----------------------------------

pair_style eam/alloy
pair_coeff * * FeCuNi.eam.alloy Fe


velocity all create 2000 482748 rot yes mom yes dist gaussian
fix 1 all nvt temp 2000 2000 10
dump 1 all atom 100 dump.fe

dump 2 all image 100 image.*.jpg type type &

timestep 0.002
thermo 100
run 2000
unfix 1

#------------------------NUMBER OF DEFECTS----------------------

fix 3 all ttm 699489 {C_e} {rho_e} {kappa_e} {gamma_p} {gamma_s} {v_0} {Nx} {Ny} ${Nz} T_intempfile outputfile

dump 1 all atom 10 dump.laser

dump 2 all image 10 image.*.jpg type type &

timestep 0.002
thermo 20
run 1000

1 Like